
An Introduction to
Practical Electronics,
Microcontrollers and

Software Design

2
nd

 edition B.Collis

© 29 November-2012 www.techideas.co.nz
This work is copyright. No one but the author may sell or distribute this material.

 ii

Table of Contents
1 Introduction to Practical Electronics ... 13
1.1 Your learning in Technology.. 14
1.2 Key Competencies from The NZ Curriculum ... 14
2 An introductory electronic circuit .. 15
2.1 Where to buy stuff? ... 15
2.2 Identifying resistors by their colour codes .. 16
2.3 LED's .. 17
2.4 Some LED Specifications .. 17
2.5 LED research task .. 17
2.6 Adding a switch to your circuit ... 18
2.7 Switch assignment .. 18
2.8 Important circuit concepts ... 19
2.9 Changing the value of resistance .. 19
2.10 Adding a transistor to your circuit .. 20
2.11 Understanding circuits ... 21
2.12 The input circuit – an LDR ... 22
2.13 Working darkness detector circuit ... 23
2.14 Protecting circuits – using a diode ... 24
2.15 Diode Research Task .. 24
2.16 Final darkness detector circuit ... 25
3 Introductory PCB contruction .. 26
3.1 Eagle Schematic and Layout Editor Tutorial .. 26
3.2 An Introduction to Eagle .. 27
3.3 The Schematic Editor .. 28
3.4 The Board Editor ... 33
3.5 Making Negative Printouts .. 37
3.6 PCB Making .. 38
4 Soldering, solder and soldering irons ... 41
4.1 Soldering facts .. 42
4.2 Soldering Safety .. 42
4.3 Soldering wires to switches ... 43
4.4 Codes of practice .. 44
4.5 Good and bad solder joints ... 45
4.6 Short circuits ... 46
4.7 Soldering wires to LED’s ... 48
5 Introductory Electronics Theory .. 49
5.1 Making electricity .. 49
5.2 ESD electrostatic discharge .. 51
5.3 Magnets, wires and motion ... 52
5.4 Group Power Assignment ... 52
5.5 Electricity supply in New Zealand .. 53
5.6 Conductors ... 54
5.7 Insulators .. 54
5.8 Choosing the right wire ... 55
5.9 Resistors ... 56
5.10 Resistor Assignment ... 56
5.11 Resistivity .. 56
5.12 Resistor prefixes ... 57
5.13 Resistor Values Exercises .. 58
5.14 Capacitors ... 60
5.15 Component symbols reference ... 61
5.16 Year 10/11 - Typical test questions so far ... 62
6 Introduction to microcontroller electronics .. 63
6.1 What is a computer? ... 64
6.2 What does a computer system do? ... 64
6.3 What exactly is a microcontroller? ... 65
6.4 What does a microcontroller system do? ... 66
6.5 Getting started with AVR Programming ... 67

 iii

6.6 Breadboard ... 67
6.7 Breadboard+Prototyping board circuit ... 68
6.8 Checking your workmanship ... 70
6.9 Output Circuit - LED .. 71
6.10 AVR programming cable ... 71
6.11 Getting started with Bascom & AVR .. 72
6.12 The compiler ... 72
6.13 The programmer ... 72
6.14 An introduction to flowcharts ... 73
6.15 Bascom output commands .. 74
6.16 Exercises .. 75
6.17 Two delays .. 76
6.18 Syntax errors -‘bugs’ ... 77
6.19 Microcontroller ports: write a Knightrider program using LED’s ... 78
6.20 Knightrider v2 .. 79
6.21 Knightroder v3... 80
6.22 Commenting your programs .. 82
6.23 Learning review ... 82
6.24 What is a piezo and how does it make sound?.. 83
6.25 Sounding Off ... 84
6.26 Sound exercises ... 86
6.27 Amp it up ... 87
7 Microcontroller input circuits ... 90
7.1 Single push button switch ... 90
7.2 Pullup resistor theory .. 92
7.3 Switch in a breadboard circuit ... 92
7.4 Checking switches in your program ... 93
7.5 Program Logic – the ‘If-Then’ Switch Test ... 94
7.6 If-then exercises .. 95
7.7 Switch contact bounce .. 96
7.8 Reading multiple switches ... 98
7.9 Bascom debounce command .. 99
7.10 Different types of switches you can use .. 100
7.11 Reflective opto switch ... 101
8 Programming Review .. 103
8.1 Three steps to help you write good programs ... 103
8.2 Saving Programs .. 103
8.3 Organisation is everything ... 103
8.4 Programming template .. 104
8.5 What you do when learning to program ... 105
8.6 AVR microcontroller hardware .. 106
8.7 Power supplies.. 106
8.8 BASCOM and AVR assignment .. 107
8.9 Programming words you need to be able to use correctly ... 109
8.10 Year10/11 typical test questions so far .. 110
9 Introduction to program flow .. 111
9.1 Pedestrian crossing lights controller .. 111
9.2 Pedestrian Crossing Lights schematic .. 112
9.3 Pedestrian Crossing Lights PCB Layout.. 113
9.4 Algorithm planning example – pedestrian crossing lights .. 114
9.5 Flowchart planning example – pedestrian crossing lights .. 115
9.6 Getting started code .. 116
9.7 Modification exercise for the pedestrian crossing .. 116
9.8 Traffic lights program flow ... 117
10 Introductory programming - using subroutines.. 125
10.1 Sending Morse code ... 126
10.2 LM386 audio amplifier PCB... 129
10.3 LM386 PCB Layout ... 131
11 Introductory programming – using variables .. 133
11.1 Stepping or counting using variables ... 134

 iv

11.2 For-Next .. 136
11.3 Siren sound - programming using variables .. 138
11.4 Make a simple siren ... 140
11.5 Siren exercise ... 141
11.6 A note about layout of program code .. 142
11.7 Using variables for data .. 143
11.8 Different types of variables .. 144
11.9 Variables and their uses .. 145
11.10 Vehicle counter ... 146
11.11 Rules about variables .. 147
11.12 Examples of variables in use ... 147
11.13 Byte variable limitations ... 148
11.14 Random Numbers ... 149
11.15 The Bascom-AVR simulator .. 150
11.16 Electronic dice project ... 151
11.17 Programming using variables – dice .. 151
11.18 Dice layout stage 1 .. 152
11.19 Dice layout stage 2 .. 153
11.20 Dice Layout final.. 154
11.21 First Dice Program flowchart ... 155
11.22 A note about the Bascom Rnd command .. 156
11.23 Modified dice ... 157
11.24 Modified Knightrider .. 159
12 Basic displays .. 160
12.1 7 segment displays ... 160
12.2 Alphanumeric LED displays .. 171
13 TDA2822M Portable Audio Amplifier Project .. 173
13.1 Portfolio Assessment Schedule ... 174
13.2 Initial One Page Brief .. 175
13.3 TDA2822M specifications ... 176
13.4 Making a PCB for the TDA2822 Amp Project .. 177
13.5 Extra PCB making information .. 181
13.6 Component Forming Codes of Practice... 182
13.7 TDA2811 wiring diagram ... 183
13.8 SKETCHUP Quick Start Tutorial ... 184
13.9 Creating reusable components in SketchUp ... 185
14 Basic programming logic .. 186
14.1 Quiz Game Controller ... 186
14.2 Quiz game controller system context diagram ... 187
14.3 Quiz game controller block diagram .. 187
14.4 Quiz game controller Algorithm ... 189
14.5 Quiz game schematic .. 190
14.6 Quiz game board veroboard layout ... 191
14.7 Quiz Controller flowchart ... 195
14.8 'Quiz Controller program code... 196
14.9 Don’t delay - use logic ... 198
15 Algorithm development – an alarm system ... 201
15.1 Simple alarm system – stage 1 ... 201
15.2 Alarm System Schematic .. 202
15.3 A simple alarm system – stage 2... 207
15.4 A simple alarm system – stage 3... 208
15.5 A simple alarm system – stage 4... 209
15.6 More complex alarm system .. 210
15.7 Alarm unit algorithm 5: .. 211
15.8 Alarm 6 algorithm: ... 212
16 Basic electronic theory ... 214
16.1 Conventional Current .. 214
16.2 Ground .. 214
16.3 Preferred resistor values ... 214
16.4 Resistor Tolerances .. 215

 v

16.5 Combining resistors in series .. 215
16.6 Combining resistors in parallel .. 216
16.7 Resistor Combination Circuits ... 217
16.8 Multimeters ... 218
16.9 Multimeter controls .. 219
16.10 Choosing correct meter settings .. 220
16.11 Ohms law .. 221
16.12 Voltage & Current Measurements ... 222
16.14 Continuity .. 223
16.15 Variable Resistors ... 224
16.16 Capacitors ... 225
16.17 Capacitor Codes and Values ... 225
16.18 Converting Capacitor Values uF, nF , pF .. 225
16.19 Capacitor action in DC circuits .. 226
16.20 The Voltage Divider ... 227
16.21 Using semiconductors ... 228
16.22 Calculating current limit resistors for an LED ... 229
16.23 The Bipolar Junction Transistor ... 230
16.24 Transistor Specifications Assignment .. 231
16.25 Transistor Case styles ... 231
16.26 Transistor amplifier in a microcontroller circuit ... 231
16.27 Transistor Audio Amplifier ... 232
16.28 Speakers ... 233
16.29 Switch types and symbols ... 234
17 Basic project planning .. 235
17.1 System Designer ... 236
17.2 Project mind map .. 240
17.3 Project timeline ... 242
17.4 System context diagram .. 244
17.5 Block Diagram... 255
17.6 Board Layouts ... 257
17.7 Algorithm design ... 262
17.8 Flowcharts .. 264
18 Example system design - hot glue gun timer .. 267
18.1 System context diagram .. 267
18.2 Hot glue gun timer block diagram .. 268
18.3 Hot glue gun timer algorithm .. 269
18.4 Hot glue gun timer flowchart .. 270
18.5 Hot glue gun timer program... 271
19 Basic interfaces and their programming ... 272
19.1 Parallel data communications ... 273
19.2 LCDs (liquid crystal displays) .. 274
19.3 Alphanumeric LCDs .. 275
19.4 ATTINY26 Development PCB with LCD .. 276
19.5 Completing the wiring for the LCD... 278
19.6 LCD Contrast Control ... 279
19.7 Learning to use the LCD ... 280
19.8 Repetition again - the ‘For-Next’ and the LCD ... 281
19.9 LCD Exerises .. 282
19.10 Defining your own LCD characters .. 285
19.11 LCD custom character program .. 285
19.12 A simple digital clock ... 287
19.13 Adding more interfaces to the ATTiny26 Development board .. 289
19.14 Ohms law in action – a multicoloured LED .. 291
20 Basic analog to digital interfaces ... 294
20.1 ADC - Analog to Digital conversion ... 294
20.2 Light level sensing .. 294
20.3 Voltage dividers review ... 295
20.4 AVR ADC connections .. 295
20.5 Select-Case .. 296

 vi

20.6 Reading an LDR’s values .. 298
20.7 Marcus’ year10 night light project .. 300
20.8 Temperature measurement using the LM35 .. 303
20.9 A simple temperature display .. 304
20.10 LM35 temperature display ... 308
20.11 Force Sensitive Resistors .. 311
20.12 Piezo sensor ... 311
20.13 Multiple switches and ADC .. 312
21 Basic System Design... 313
21.1 Understanding how systems are put together ... 313
21.2 Food Processor system block diagram ... 313
21.3 Subsystems .. 313
21.4 Food Processor system functional attributes- algorithm .. 313
21.5 Food Processor system flowchart ... 314
21.6 Toaster Design.. 315
21.7 Toaster - system block diagram .. 315
21.8 Toaster Algortihm .. 315
22 Basic System development - Time Tracker. .. 316
22.1 System context diagram and brief ... 317
22.2 Time tracker block diagram ... 318
22.3 Algorithm development ... 319
22.4 Schematic ... 319
22.5 Time tracker flowchart and program version 1... 320
22.6 Time Tracker stage 2 .. 321
22.7 Time Tracker stage 3 .. 323
22.8 Time Tracker stage 4 .. 325
23 Basic maths time ... 329
23.1 Ohms law calculator .. 329
23.2 more maths - multiplication ... 334
23.3 Algorithms for multiplication of very large numbers ... 336
23.4 Program ideas - algorithm and flowchart exercises ... 338
24 Basic string variables .. 339
24.1 Strings assignment ... 341
24.2 ASCII Assignment ... 343
24.3 Time in a string ... 346
24.4 Date in a string .. 348
24.5 Scrolling message assignment .. 350
24.6 Some LCD programming exercises. .. 351
25 Advanced power interfaces .. 352
25.1 Microcontroller power limitations ... 352
25.2 Power ... 354
25.3 Power dissipation in resistors .. 354
25.4 Diode characteristics ... 355
25.5 Using Zener diodes ... 356
25.6 How diodes work ... 357
25.7 How does a LED give off light? ... 358
25.8 LCD Backlight Data ... 359
25.9 Transistors as power switches .. 360
25.10 High power loads .. 361
25.11 AVR Power matters ... 361
25.12 Darlington transistors - high power .. 363
25.13 ULN2803 Octal Darlington Driver .. 365
25.14 Connecting a FET backlight control to your microcontroller .. 367
25.15 FET backlight control ... 368
26 Advanced Power Supply Theory .. 369
26.1 Typical PSUs .. 370
26.2 The four stages of a PSU (power supply unit) ... 371
26.3 Stage 1: step down transformer .. 371
26.4 Stage 2: AC to DC Conversion .. 373

 vii

26.5 Stage 3: Filtering AC component .. 374
26.6 Stage 4: Voltage Regulation .. 374
26.7 Ripple (decibel & dB) .. 378
26.8 Line Regulation ... 379
26.9 Load Regulation .. 379
26.10 Current Limit ... 380
26.11 Power, temperature and heatsinking ... 383
26.12 Typical PSU circuit designs ... 385
26.13 PSU block diagram ... 385
26.14 PSU Schematic ... 385
26.15 Practical current limit circuit. .. 388
26.16 Voltage measurement using a voltage divider ... 390
26.17 Variable power supply voltmeter program ... 392
27 Year11/12/13 typical test questions so far ... 394

28 Advanced programming -arrays ... 396
29 AVR pull-up resistors .. 401
30 Advanced keypad interfacing ... 402
30.1 Keypad program 1 .. 402
30.2 Keypad program 2 .. 404
30.3 Keypad program 3 – cursor control ... 405
30.4 Keypad texter program V1 .. 408
30.5 Keypad texter program 1a ... 412
30.6 ADC keypad interface ... 413
31 Do-Loop & While-Wend subtleties ... 416
31.1 While-Wend or Do-Loop-Until or For-Next? ... 417
32 DC Motor interfacing ... 422
32.1 H-Bridge.. 424
32.2 H-Bridge Braking ... 426
32.3 L293D H-Bridge IC .. 427
32.4 L298 H-Bridge IC .. 429
32.5 LMD18200 H-Bridge IC ... 430
32.6 LMD18200 program .. 433
32.7 Darlington H-Bridge .. 434
32.8 Stepper motors ... 437
32.9 PWM - pulse width modulation .. 444
32.10 PWM outputs .. 445
32.11 Uses for PWM ... 446
32.12 ATMEL AVRs PWM pins ... 447
32.13 PWM on any port .. 448
32.14 PWM internals ... 449
33 Advanced System Example – Alarm Clock ... 451
33.2 Analogue seconds display on an LCD ... 456
33.3 LCD big digits ... 459
34 Resistive touch screen .. 467
34.1 Keeping control so you dont lose your ‘stack’ .. 473
35 System Design Example – Temperature Controller .. 474
36 Advanced programming - state machines ... 477
36.1 Daily routine state machine ... 477
36.2 Truck driving state machine .. 479
36.3 Developing a state machine .. 483
36.4 A state machine for the temperature alarm system ... 484
36.5 Using System Designer software to design state machines .. 487
36.6 State machine to program code .. 489
36.7 The power of state machines over flowcharts ... 492
36.8 Bike light – state machine example ... 494
36.9 Bike light program version1b ... 496
36.10 Bike light program version2 ... 498
37 Alarm clock project re-developed .. 500
37.1 System Designer to develop a Product Brainstorm ... 500

 viii

37.2 Initial block diagram for the alarm clock .. 502
37.3 A first (simple) algorithm is developed ... 504
37.4 A statemachine for the first clock .. 505
37.5 Alarm clock state machine and code version 2.. 507
37.6 Token game – state machine design example .. 508
38 Advanced window controller student project ... 513
38.1 Window controller state machine #1 .. 513
38.2 Window controller state machine #3. ... 514
38.3 Window controller state machine #5 .. 515
38.4 Window controller program ... 516
39 Alternative state machine coding techniques ... 523
40 Complex - serial communications .. 525
40.1 Simplex and duplex ... 525
40.2 Synchronous and asynchronous ... 525
40.3 Serial communications, Bascom and the AVR .. 526
40.4 RS232 serial communications ... 527
40.5 Build your own RS232 buffer ... 529
40.6 Talking to an AVR from Windows XP .. 530
40.7 Talking to an AVR from Win7 .. 532
40.8 First Bascom RS-232 program .. 534
40.9 Receiving text from a PC .. 535
40.10 BASCOM serial commands ... 536
40.11 Serial IO using Inkey() ... 537
40.12 Creating your own software to communicate with the AVR ... 540
40.13 Microsoft Visual Basic 2008 Express Edition ... 541
40.14 Stage 1 – GUI creation .. 542
40.15 Stage 2 – Coding and understanding event programming ... 551
40.16 Microsoft Visual C# commport application ... 556
40.17 Microcontroller with serial IO. .. 561
40.18 PC software (C#) to communicate with the AVR ... 566
40.19 Using excel to capture serial data ... 570
40.20 PLX-DAQ .. 572
40.21 StampPlot ... 573
40.22 Serial to parallel .. 575
40.23 Keyboard interfacing – synchronous serial data .. 580
40.24 Keyboard as asynchronous data ... 587
41 Radio Data Communication .. 590
41.1 An Introduction to data over radio ... 590
41.2 HT12E Datasheet, transmission and timing .. 597
41.3 HT12 test setup ... 600
41.4 HT12E Program .. 602
41.5 HT12D datasheet .. 603
41.6 HT12D Program .. 605
41.7 Replacing the HT12E encoding with software ... 606
42 Introduction to I2C ... 610
42.1 I2C Real Time Clocks ... 611
42.2 Real time clocks .. 612
42.3 Connecting the RTC ... 612
42.4 Connecting the RTC to the board .. 612
42.5 Internal features .. 613
42.6 DS1307 RTC code .. 614
42.7 DS1678 RTC code .. 619
43 Plant watering timer student project .. 624
43.1 System block diagram ... 624
43.2 State machine ... 624
43.3 Program code ... 625
44 Bike audio amplifier project .. 635
45 Graphics LCDs ... 641
45.1 The T6963 controller ... 641

 ix

45.2 Graphics LCD (128x64) – KS0108 .. 646
45.3 Generating a negative supply for a graphics LCD ... 651
46 GLCD Temperature Tracking Project ... 653
46.1 Project hardware ... 653
46.2 Project software planning .. 655
46.3 Draw the graph scales .. 656
46.4 Read the values .. 657
46.5 Store the values .. 659
46.6 Plot the values as a graph ... 660
46.7 Full software listing ... 662
47 Interrupts .. 665
47.1 Switch bounce problem investigation .. 667
47.2 Keypad- polling versus interrupt driven ... 668
47.3 Improving the HT12 radio system by using interrupts .. 673
47.4 Magnetic Card Reader .. 675
47.5 Card reader data structure .. 675
47.6 Card reader data timing .. 676
47.7 Card reader data formats .. 677
47.8 Understanding interrupts in Bascom- trialling .. 677
47.9 Planning the program .. 680
47.10 Pin Change Interrupts PCINT0-31 ... 683
48 Timer/Counters .. 685
48.1 Timer2 (16 bit) Program .. 686
48.2 Timer0 (8bit) Program ... 687
48.3 Accurate tones using a timer (Middle C).. 688
48.4 Timer1 Calculator Program ... 689
48.5 Timer code to make a siren by varying the preload value .. 690
49 LED dot matrix scrolling display project – arrays and timers 691
49.1 Scrolling text code ... 694
49.2 Scrolling text – algorithm design ... 696
49.3 Scrolling test - code .. 697
50 Medical machine project – timer implementation ... 702
50.1 Block diagram ... 702
50.2 Blower - state machine .. 703
50.3 Blower program code .. 704
51 Multiple 7-segment clock project – dual timer action ... 708
51.1 Understanding the complexities of the situation .. 708
51.2 Hardware understanding: .. 709
51.3 Classroom clock – block diagram .. 710
51.4 Classroom clock - schematic ... 711
51.5 Classroom clock - PCB layout ... 711
51.6 Relay Circuit Example ... 712
51.7 Classroom clock – flowcharts .. 716
51.8 Classroom clock – program ... 717
52 The MAX 7219/7221 display driver IC’s .. 732
52.1 AVR clock/oscillator .. 736
53 Cellular Connectivity-ADH8066 .. 737
53.1 ADH prototype development ... 738
53.2 ADH initial test setup block diagram .. 740
53.3 Process for using the ADH .. 741
53.4 ADH communications .. 743
53.5 Initial state machine .. 744
53.6 Status flags ... 745
53.7 Second state machine ... 746
53.8 StateMachine 3 ... 747
53.9 Sending an SMS text .. 748
53.10 Receiving an SMS text .. 749
53.11 Splitting a large string (SMS message) ... 750
53.12 Converting strings to numbers ... 753

 x

53.13 Full Program listing for SM3 .. 754
54 Data transmission across the internet ... 771
54.1 IP address ... 772
54.2 MAC (physical) address .. 772
54.3 Subnet mask ... 773
54.4 Ping .. 773
54.5 Ports ... 774
54.6 Packets ... 774
54.7 Gateway.. 775
54.8 DNS .. 777
54.9 WIZNET812 .. 778
54.10 Wiznet 812 Webserver V1 ... 785
54.11 Transmitting data .. 790
54.12 Wiznet Server2 (version1) ... 802
54.13 ‘Main do loop ... 804
54.14 process any messages received from browser .. 805
54.15 Served webpage ... 807
55 Assignment – maths in the real world ... 809
55.1 Math sssignment - part 1 ... 812
55.2 Math assignment - part 2 .. 813
55.3 Math assignment - part 3 .. 814
55.4 Math assignment - part 4 .. 815
55.5 Math assignment - part 5 .. 816
55.6 Math assignment - part 6 .. 817
55.7 Extension exercise .. 817
56 SSD1928 based colour graphics LCD .. 818
56.1 System block diagram ... 818
56.2 TFT LCDs ... 819
56.3 System memory requirements .. 820
56.4 System speed ... 820
56.5 SSD and HX ICs ... 820
56.6 Colour capability ... 820
56.7 SSD1928 and HX8238 control requirements ... 821
56.8 SSD1928 Software ... 822
56.9 SSD1928 microcontroller hardware interface .. 826
56.10 Accessing SSD control registers ... 827
56.11 SSD1928_Register_routines.bas .. 829
56.12 Accessing the HX8238. ... 833
56.13 SSD1928_GPIO_routines.bas ... 833
56.14 LCD timing signals .. 835
56.15 HX setups ... 836
56.16 SSD setups ... 837
56.17 SSD line / HSync timing .. 838
56.18 SSD row / VSync/ frame timing ... 839
56.19 HX and SSD setup routine .. 841
56.20 'SSD1928_HardwareSetup_Routines.bas ... 841
56.21 SSD1928_Window_Control_Routines.bas .. 845
56.22 Colour data in the SSD memory .. 848
56.23 Accessing the SSD1928 colour memory ... 849
56.24 'SSD1928_Memory_Routines.bas ... 849
56.25 Drawing simple graphics ... 851
56.26 'SSD1928_Simple_Graphics_Routines.bas .. 851
56.27 SSD1928_text_routines .. 854
57 Traffic Light help and solution ... 858
58 Computer programming – low level detail ... 862
58.1 Low level languages:... 862
58.2 AVR Internals – how the microcontroller works ... 863
58.3 1. The 8bit data bus .. 864
58.4 2. Memory ... 864
58.5 3. Special Function registers ... 865

 xi

58.6 A simple program to demonstrate the AVR in operation .. 865
58.7 Bascom keyword reference ... 867
59 USB programmer - USBASP ... 869
60 USBTinyISP programmer .. 871

61 C-Programming and the AVR ... 875
61.1 Configuring a programmer .. 876
61.2 First program .. 878
61.3 Output window .. 880
61.4 Configuring inputs & outputs ... 881
61.5 Making a single pin an input .. 882
61.6 Making a single pin an output .. 883
61.7 Microcontroller type ... 884
61.8 Includes .. 884
61.9 Main function .. 885
61.10 The blinkyelled program .. 886
61.11 Counting your bytes .. 887
61.12 Optimising your code .. 889
61.13 Reading input switches ... 890
61.14 Macros .. 891
61.15 Auto-generated config from System Designer ... 892
61.16 Writing your own functions .. 894
61.17 AVR Studio editor features .. 896
61.18 AVR hardware registers .. 897
61.19 Character LCD programming in C ... 898
61.20 CharLCD.h Header file .. 898
61.21 Manipulating AVR register addresses ... 901
61.22 Writing to the LCD ... 902
61.23 Initialise the LCD ... 904
61.24 lcd commands ... 906
61.25 Writing text to the LCD .. 907
61.26 Program Flash and Strings .. 908
61.27 LCD test program1 .. 909
61.28 CharLCD.h .. 910
61.29 CharLCD.c .. 912
62 Object Oriented Programming (OOP) in CPP and the AVR .. 916
62.1 The black box concept .. 916
62.2 The concept of a class .. 916
62.3 First CPP program .. 917
62.4 Creating an AVR CPP program in Atmel Studio 6 ... 918
62.5 Adding our class files to the project ... 920
62.6 First Input and output program .. 921
62.7 Class OutputPin .. 922
62.8 Class InputPin ... 922
62.9 Inheritance .. 923
62.10 Class IOPin ... 923
62.11 Encapsulation ... 924
62.12 Access within a class .. 924
62.13 Class Char_LCD ... 925
62.14 Exercise – create your own Led class. .. 928
63 Alternative AVR development PCBS .. 930
63.1 ATTiny461 breadboard circuit ... 930
63.2 Alternative ATMega48 breadboard circuit ... 931
63.3 Alternative ATMega breadboard circuit ... 934
63.4 AVR circuit description .. 935
63.5 ATMega on Veroboard .. 936
63.6 Different microcontroller starter circuit ... 938
63.7 Getting started code for the ATMega48 .. 938
63.8 Getting started code for the ATMega16 .. 939
63.9 Early ATMega boards ... 940
63.10 AVR Development Board 2 ... 943

 xii

63.11 Dev board version 2 circuit diagram .. 944
63.12 Dev board pcb layout version 2 ... 945
63.13 ATMEGA V4b development board circuit – 12TCE 2011 .. 946
63.14 V4b devboard layout 12TCE 2011 .. 947
63.15 ATMega Dev PCB V5DSchematic (2012) ... 948
63.16 ATMega Dev PCB V5DLayout (2012) ... 949
63.17 ATMega Dev PCB V5D Copper (2012) ... 950
63.18 Year10 ATTiny461 V3d development board .. 951
63.19 Year11 ATTiny461 V6d development board .. 954
63.20 ATTiny461 V6d development board layouts .. 955
63.21 ATTiny461 V6b development board images .. 956
63.22 ATMega 48 Dev PCB 2A ... 957
63.23 ATMEGA Protoyping board ... 959
63.24 128x64 GLCD Schematic – VerC -data on portB... 960
63.25 128x64 GLCD Layout – VerC –data on portB .. 961
63.26 128x64 GLCD Schematic – VerD -data on portB... 962
63.27 128x64 GLCD Layout –VerD -data on portB ... 963
63.28 GLCD 192x64 schematic .. 964
63.29 GLCD 192x64 layout ... 965
63.30 ATMEGA microcontroller pin connections .. 966
63.31 ATMEGA16/644 40pin DIP package– pin connections ... 967
64 Eagle - creating your own library ... 968
64.1 Autorouting PCBS ... 975
65 Practical Techniques ... 977
65.1 PCB Mounting ... 977
65.2 Countersink holes and joining MDF/wood ... 978
65.3 MDF .. 979
65.4 Plywood .. 979
65.5 Acrylic ... 980
65.6 Electrogalv .. 980
65.7 Choosing fasteners ... 981
65.8 Workshop Machinery .. 982
65.9 Glues/Adhesives ... 984
65.10 Wood Joining techniques .. 985
65.11 Codes of Practice for student projects ... 986
65.12 Fitness for purpose definitions and NZ legislation ... 987
66 CNC ... 988
66.1 Machine overview ... 989
66.2 Starting the CNC machine .. 990
66.3 CamBam ... 991
66.4 CamBam options .. 991
66.5 Drawing shapes in CamBam ... 992
66.6 Machining commands ... 994
66.7 A Box of Pi .. 995
66.8 Holding Tabs ... 1001
66.9 Engraving .. 1002
66.10 Polylines ... 1003
67 Index ... 1006

13

1 Introduction to Practical Electronics

This book has a number of focus areas.

 Electronic component recognition and correct handling

 Developing a solid set of conceptual understandings in basic electronics.

 Electronic breadboard use

 Hand soldering skills

 Use of Ohm's law for current limiting resistors

 The voltage divider

 CAD PCB design and manufacture

 Microcontroller programming and interfacing

 The transistor as a switch

 Power supply theory

 Motor driving principles and circuits

 Modelling solutions through testing and trialing

 Following codes of practice

 Safe workshop practices

14

1.1 Your learning in Technology

1.1.1 Technology Achievement Objectives from the NZ Curriculum

Technological Practice
Brief –develop clear specifications for your technology projects.
Planning – thinking about things before you start making them and using drawings such as

flowcharts, circuit diagrams, pcb layouts, statecharts and sketchup plans while working.
Outcome Development – trialling, testing and building electronic circuits, designing and making

PCBs, writing programs for microcontrollers.
Technological Knowledge

Technological Modelling – before building an electronic device, it is important to find out how
well it works first by modelling and/or trialling its hardware and software.

Technological Products – getting to know about components and their characteristics.
Technological Systems - an electronic device is more than a collection of components it is a

functioning system with inputs, outputs and a controlling process.
Nature of Technology

Characteristics of Technological Outcomes – knowing about electronic components
especially microcontrollers as the basis for modern technologies.

Characteristics of Technology – electronic devices now play a central role in the infrastructure
of our modern society; are we their masters, how have they changed our lives?

1.2 Key Competencies from The NZ Curriculum

Thinking – to me the subject of technology is all about thinking. My goal is to have students
understand the technologies embedded within electronic devices. To achieve this students
must actively enage with their work at the earliest stage so that they can construct their own
understandings and go on to become good problem solvers. In the beginning of their learning
in electronics this requires students to make sense of the instructions they have been given
and search for clarity when they do not understand them. After that there are many new and
different pieces of knowledge introduced in class and students are given problem solving
exercises to help them think logically. The copying of someone elses answer is flawed but
working together is encouraged. At the core of learning isbuilding correct conceptual models
and to have things in the context of the ‘big picture’.

Relating to others – working together in pairs and groups is as essential in the classroom as it
is in any other situation in life; we all have to share and negotiate resources and equipment
with others; it is essential therefore to actively communicate with each other and assist one
other.

Using language symbols and texts – At the heart of our subject is the language we use for
communicating electronic circuits, concepts, algorithms and computer programming syntax; so
the ability to recognise and using symbols and diagrams correctly for the work we do is vital.

Managing self – This is about students taking personal responsibility for their own learning; it is
about challenging students who expect to read answers in a book or have a teacher tell them
what to do. It means that students need to engage with the material in front of them.
Sometimes the answers will come easily, sometimes they will not; often our subject involves a
lot of trial and error (mostly error). Students should know that it is in the tough times that the
most is learnt. And not to give up keep searching for understanding.

Participating and contributing – We live in a world that is incredibly dependent upon
technology especially electronics, students need to develop an awareness of the importance
of this area of human creativity to our daily lives and to recognise that our projects have a
social function as well as a technical one.

15

2 An introductory electronic circuit

2.1 Where to buy stuff?

In New Zealand there are a number of reasonably
priced and excellent suppliers for components including
www.surplustronics.co.nz and
www.activecomponents.com Overseas suppliers I use
include www.digikey.co.nz, www.sparkfun.com
ebay.com & aliexpress.com

A breadboard is a plastic block with holes and metal
connection strips inside it to make circuits. The holes
are arranged so that components can be connected
together to form circuits. The top and bottom rows are
usually used for power, top for positive which is red and
the bottom for negative which is black.

This circuit could be built like this, note that the LED

must go around the correct way. If you have the LED and resistor connected in a closed circuit
the LED should light up.

Schematic or circuit diagram Layout

The LED requires 2V the battery is 9V, if you put the LED across the battery it would stop working!
So a 1k (1000ohm) resistor is used to reduce the voltage to the LED and the current through it, get
a multimeter and measure the voltage across the resistor, is it close to 7V?
If you disconnect any wire within the circuit it stops working, a circuit needs to be complete before
electrons can flow.

http://www.surplustronics.co.nz/
http://www.activecomponents.com/
http://www.digikey.co.nz/
http://www.sparkfun.com/

16

2.2 Identifying resistors by their colour codes

When getting a resistor check its value! In our circuits each resistor has a special pupose, and the

value is chosen depending on whether we want more or less current in that part of the circuit,The
higher the value of the resistor the lower the currentThe lower the value of the resistor the higher
the current.

1M
‘1 Meg’
1 Million Ohms
1M Ω
1,000,000 ohms

10k
10 thousand ohms
10,000 ohms
10k Ω

1k
1 thousand ohms
1,000 ohms
1k Ω

390R
390 ohms
390Ω

100R
1000 ohms
100Ω

47R
47 ohms
47Ω

17

2.3 LED's

Light Emitting Diodes are currently used in indicators and displays
on equipment, however they are becoming used more and more
as replacements for halogen and incandescent bulbs in many
different applications. These include vehicle lights, traffic signals,
outdoor large TV screens.

Compared to incandescent bulbs (wires inside
glass bulbs that glow), LEDs give almost no heat
and are therefore highly efficient. They also have
much longer lives e.g. 10 years compared to 10
months. So in some situations e.g. traffic signals,
once LEDs are installed there can be significant
cost savings made on both power and
maintenance. There is a small problem with LED
traffic lights though – they don’t melt snow that
collects on them!!!

2.4 Some LED Specifications

 Intensity: measured in mcd (millicandela)
 Viewing Angle: The angle from centre where intensity drops to 50%
 Forward Voltage: Voltage needed to get full brightness from the the LED
 Forward Current: Current that will give maximum brightness,
 Peak Wavelength: the brightest colour of light emitted

2.5 LED research task

From a supplier in New Zealand (e.g. Surplustronics, DSE, Jaycar, SICOM) find the information and the
specifications / attributes for two LEDs, a normal RED 5mm LED and a 5mm high intensity LED.

LED RED 5mm High intensity 5mm

Supplier

Part number

Cost ($)

Brightness (mcd)

Forward voltage (Vf)

Wavelength (nm)

Forward current (If)

18

2.6 Adding a switch to your circuit

Schematic or circuit diagram Layout

A switch is the way a user can manually control a circuit

2.7 Switch assignment

Find a small switch and carefully disassemble it (take it apart) draw how it works and explain its
operation. Make sure you explain the purpose of the spring(s).

Here are simplified drawings of a small slide switch when it is in both positions.
When the switch is on electricity can flow, when it is open the circuit is broken.

19

2.8 Important circuit concepts

A circuit consists of a number of components and a power supply linked by wires.

Electrons (often called charges) flow in a
circuit; however unless there is a complete
circuit (a closed loop) no electrons can flow.

Voltage is the measure of energy in a circuit,
it is used as a measure of the energy
supplied from a battery or the energy
(voltage) across a part of a circuit.

Current (I) is the flow of electrons from the
battery around the circuit and back to the
battery again. Current is measured in Amps
(usually we will use milliamps or mA).
Note that current doesn't flow electrons or
charges flow. Just like in a river the current
doesn't flow the water flows.

Resistance works to reduce current , the resistors in the circuit offer resistance to the current.

Conductors such as the wires connecting components together have (theoretically) no resistance
to current.
A really important concept to get clear in your mind is that:
Voltage is across components and current is through components.

2.9 Changing the value of resistance

What is the effect of different resistor values on our circuit?
The resistor controls the current flow, the higher the resistor value the lower the current. (what
would a 10K resistor look like?

20

2.10 Adding a transistor to your circuit

Schematic (circuit diagram)

2N7000 FET
(Field Effect Transistor)

A FET is a control
component that
amplifies small signals.

It has three legs or
leads:
D – Drain
G – Gate
S – Source

Only a small signal is
required on the gate to
control a larger current
through the source to
the drain.

The collector current is
the same current which
lights the LED

The 390 limits this
current to an
acceptable value for
the LED.

Breadboard layout diagram

21

2.11 Understanding circuits

Electronics is all about controlling the physical world. Physical objects have properties such as
temperature, force, motion, sound/radio/light waves associated with them

Electronic devices have input circuits to convert the physical world (light sound etc) to different
voltage levels.
They have process circuits that transform, manipulate and modify information (the information is
coded as different voltages).
They have output circuits to convert differen coltgae levels back to the physical world where we
can sense the outcome of the process (light, sound etc)

Take an example such as a television, the physical world radio signal on the input is converted to
an voltage level, this is processed by the electronic circuit and converted to light which we see and
sound which we can hear.

22

2.12 The input circuit – an LDR

The LDR or Light Dependant Resistor is a common component used in
circuits to sense light level. An LDR varies resistance with the level of light
falling on it.

LDRs are made from semiconductors such as Selenium, Thalliumoxid and
Cadmiumsulfide.

As photons of light hit the atoms within the LDR, electrons can flow through
the circuit. This means that as light level increases, resistance decreases.

Find an LDR and measure its resistance:

in full daylight the LDRs resistance is approximately ____________

in darkness the LDRs resistance is approximately ______________

LDRs can only with stand a small current
flow e.g. 5mA, if too much current flows
they may overheat and burn out. They are
used in voltage divider circuits with a
series resistor. The components are a
resistor from 10K (10,000) ohms to 1M
(1,000,000) ohms, an LDR, a battery and
the circuit is a series one.

When it is dark the LDR has a high resistance and the output voltage is high.

When it is bright the LDR has a low resistance
and the voltage is low.

23

2.13 Working darkness detector circuit

The resistor in series with the LDR can be experiments with to change the sensitivity of the circuit
to different light levels.

24

2.14 Protecting circuits – using a diode

 Diodes are very common components, they come in all shapes and sizes.

The key characteristic of a
diode is that there is
current in only one
direction so you cannot
reverse it in the circuit and
expect it to work.
 In this modified circuit the
power is supplied from the
battery. The circuit is
protected by a diode, this
means if the battery is
connected in reverse then
there is no current because
the diode blocks it (this is
commonly used in the
workshop to protect our
circuits from a reverse
polarity situation).

Of course no diode is perfect and should the voltage of the power supply exceed the voltage rating
of the diode then the diode would breakdown, this means the current would increase rapidly and it
would burn up. The 1N4004 has a 400V rating.

Diodes can only take a certain current in the forward direction before they overheat and burn up.
The 1N4004 has a maximum forward current of 1Amp.

2.15 Diode Research Task

Research the specifications for these two common diodes (ones we use often in class) and find
out what each specification / attribute means.

 Description 1N4007 1N4148

Peak
reverse
voltage

Maximum
forward
current

25

2.16 Final darkness detector circuit

The function of the input part of the circuit is to detect light level.
The function of the process part of the circuit (the transistor) is to amplify the small change in
voltage due to light changes.
The function of the output part of the circuit is to indicate something to the end user.
The function of the power supply is to safely provide the energy for the circuit to work

When it is dark the LED is switched on, when there is light present the LED is switched off. This
circuit could be used to help a younger child orientate themselves at night and to find the door in a
darkened room.
The DIODE, LED and TRANSISTOR are polarised, have positive and negative ends and therefore
require wiring into the circuit the right way round or it will not work

You can identify the LED polarity by the flat on the LED body(negative-cathide) or by the longer
lead (positive or anode)
You can identify the TRANSISTOR polarity by the shape of the bidy and the layout of the three
leads

Draw lines from the components to the symbols to help you remember them. Remember the
resistor in the output circuit was made a lower value (changed from 1k to 390ohms) to make the
LED brighter in the final circuit.

26

3 Introductory PCB contruction
We take a short break from programming to introduce a further topic of construction - PCB making

3.1 Eagle Schematic and Layout Editor Tutorial

A circuit such as the darkeness detector is no good to us on a breadboard it needs a permanent
solution and so we will build it onto a PCB (printed circuit board).

27

3.2 An Introduction to Eagle

Eagle is a program from www.cadsoft.de that enables users to draw the circuit diagram for an
electronic circuit and then layout the printed circuit board. This is a very quick start tutorial, where
you will be led step by step through creating a PCB for a TDA2822 circuit.

The version used is the freeware version which has the following limitations; the PCB size is
limited to 100mm x 80mm and the board must be not for profit

3.2.1 Open Eagle Control Panel

Start - Programs - Eagle - Eagle 4.13

3.2.2 Create a new schematic

On the menu go to FILE then NEW then SCHEMATIC

You will see the schematic editor

3.2.3 Saving your schematic

 It is always best to save your data before you start work

 Eagle creates many temporary files so you need to keep your folders tidy.

 If this is the first time you have used Eagle create an Eagle folder within your folder on the
server.

 Within the Eagle folder create a folder for the name of this project e.g. DarkDetector

 Save the schematic as DarkDetector verA.sch within the DarkDetector folder.

28

3.3 The Schematic Editor

The first part of the process in creating a PCB is drawing the schematic.
 1. Parts will be added from libraries
 2. and joined together using ‘nets’ to make the circuit

3.3.1 The Toolbox

As you point to the tools in the TOOLBOX their names will appear in a popup and also their
description will appear in the status bar at the bottom of the window

Find the following tools

 ADD A PART

 MOVE AN OBJECT

 DELETE AN OBJECT

 DEFINE THE NAME OF AN OBJECT

 DEFINE THE VALUE OF AN OBJECT

 DRAW NETS (connections)

 ERC (electrical rule check)

29

3.3.2 Using parts libraries

Selecting parts libraries to use.

Parts are stored within libraries and there are a large number of libraries in Eagle.

It is not hard to create your own library and modify the parts within it. The cls.lbr has many already
modified components within it. If Eagle is not setup to use the cls library you will need to do it
now.

1. From your internet browser save the file cls.lbr into your Eagle folder.
2. In Eagle's control panel from the menu select options then directories
3. In the new window that appears make sure the directories for the libraries are highlighted
4. Click on browse and find your Eagle.directory
5. Next highlight the directories for Projects
6. Click on browse and find your Eagle directory again.
7. Choose OK.
8. You might need to close EAGLE and restart it to make sure it reads the libraries ok.
9. To use a library right click on it from within the Control Panel
10. Make sure Use is highlighted. It will have a green dot next to it if it is selected
11. At this time right click on the other lbr folder and select Use none.

NOTE THE IMPORTANCE OF THE GREEN DOT NEXT TO THE LIBRARY,
if its not there you will not see the library in the schematic editor!

30

3.3.3 Using Components from within libraries.

From your schematic Click the ADD button
in the toolbox
A new window will open (it may take a
while)

 Find the CLS library

 Open it by double clicking on it or by
clicking the + sign

 Open the R-EU_ section (Resistor-
European)

 Here you will find the 0204/10
resistor.

 Select it and then click OK

Add 2 more resistors of the same type.

Add all of the following parts
LIBRARY PART Qty
cls REU-0204/10 3
cls LDR 1
cls 2,54/0,8 (wirepads) 2
cls led 5MM 1
cls 1N4148 D41-10 1
cls 2N7000 1
cls GND 3
A wirepad allows us to connect wires to the PCB (such as wires to switches and batteries)

3.3.4 Different component
packages

There are several different types of
resistors; they all have the same symbol
however resistors come in different
physicalpackages so we must choose an
appropriate one.The 0204/7 is suitable
for us but any of the 4 smallest ones
would be OK.

31

Moving parts

Move the parts around within the schematic editor so that they are arranged as per the schematic
below. Keep the component identifiers (numbers like R1, R2, R3) in the same places as those
below.

3.3.5 Wiring parts together

These form the electrical connections that makeup the
circuit. Select the net button from the toolbox.

Left click on the very end of a component and draw in a
straight line either up, down, left or right.

Left click again to stop at a point and draw before drawing in
another direction.

Double left click at another component to finish the wire.

32

3.3.6 Zoom Controls

There are a number of zoom controls that can be used to help you work in your circuit.

Find these on the toolbar and identify what each does.

Nets
Nets are the wire connections between the components, each has a
unique name.

Find the info button in the toolbox and check the names and details of the
components and nets/wires.

When you want to connect a new net to an existing net, Eagle will prompt
you as to which name to give the combined net.

If one of the nets has a proper name i.e. VCC, V+,V-, ground... use that
name, otherwise choose the net with the smallest number

3.3.7 Junctions

Junctions are the dots at joins in the circuit, they are there to make sure that the wires are
electrically connected. Generally you will NOT need to add these to your circuit as the net tool puts
them in place automatically

33

3.3.8 ERC

The ERC button causes Eagle to test the schematic for electrical errors.

Errors such as pins overlapping, and components unconnected are very common.

The ERC gives a position on the circuit as to where the error is; often zooming in on that point and
moving components around will help identify the error.

You must correct all errors before going on.

3.4 The Board Editor

The board editor is opened using a button in the toolbar, find this button and answer yes to the
question about creating the board.

The new window has a pile of parts and an area upon which to place them.

WARNING: once you have started to create a board always have both the board and
schematic open at the same time, never work on one without the other open or you will get
horrible errors which will require you to delete the .brd file and restart the board from
scratch.

34

3.4.1 Airwires

The wires from the schematic have become connections called airwires, these wires will shortly
become tracks on the PCB.

These connections can look very messy at times and at this stage it is called a RATSNEST.

3.4.2 Moving Components

Move the components into the highlighted area. In the demo version you cannot place parts
outside this area. Keep the components in the lower left corner near the origin (cross).

Reduce the size of the highlighted area you are using for the components. Then zoom to fit.
Progressively arrange the components so that there is the minimum number of crossovers.

As you place components press the Ratsnest button often to reorganize the Airwires. Eventually
your picture will look like the one on the right.

Good PCB design is more about placement of components than routing, so spending most
of your time (80%) doing this step is crucial to success.
You want to make track lengths as short as possible

35

3.4.3 Hiding/Showing Layers

The DISPLAY button in the TOOLBOX is used to turn on and off different sets of screen
information. Turn off the names, and values while you are placing components. This will keep the
screen easier to read. Turn off the layer by selecting the display button and in the popup window
pressing the number of the layer you no longer want to see.

36

3.4.4 Routing Tracks

Now is the time to replace the airwires with actual PCB
tracks. Tracks need to connect all the correct parts of the
circuit together without connecting together other parts.
This means that tracks cannot go over the top of one
another, nor can they go through the middle of
components!

Go to the Toolbar, Select the ROUTE button

On the Toolbar make sure the Bottom layer is selected
(blue) and that the track width is 0.04. Left click on a
component.

Note that around your circuit all of the pads on the same
net will be highlighted. Route the track by moving the
mouse and left clicking on corner points for your track as
you go. YOU ONLY WANT TO CONNECT THE PADS
ON THE SAME NET, DON'T CONNECT ANY OTHERS
OR YOUR CIRCUIT WILL NOT WORK. Double click on a
pad to finish laying down the track.

Track layout Rules
1. Place tracks so that no track touches the leg of

a component that it is not connected to on the
schematic

2. No track may touch another track that it is not
connected to on the schematic

3. Tracks may go underneath the body of a
component as long as they meet the above
rules

3.4.5 Ripping up Tracks

Ripping up a track is removing the track you have laid
down and putting the airwire back in place. This will be
necessary as you go to solve problems where it is not
possible to route the tracks. You may even want to rip up
all the tracks and move components around as you go.

37

3.5 Making Negative Printouts

Eagle is straight forward at producing printouts for a positive photographic pcb making process.

(NOTE THE TEXT ON THE PCB APPEARS
REVERSED THIS IS CORRECT)

If your photosensitive board
requires a negative image
such as this, another stage on
the process is required..

3.5.1 Other software
required

The following software is required to manipulate the
special CAM (computer aided manufacturing) files
created by Eagle (and other pcb CAD software) into
the printed image you require. All this software is
shareware with no fees attached for its use by
students.

 * Install GhostScript - from http://www.ghostscript.com
 * Install GSView - from http://www.ghostgum.com.au/

Conversion process
This process creates a '.ps' (postscript file), it is the best output from Eagle to use. It will keep the
board exactly the same and correct size for printing.

 * Open TDA2822verA.brd in Eagle
 * From within the Eagle Board Editor start the CAM Processor
 * select device as PS_INVERTED
 * Scale = 1
 * file = .ps
 * make sure fill pads is NOT selected this
makes small drill holes in the acetate which
we use to line up the drill with when drilling
 * for layers select only 16,17,18 and 20,
 * make sure ALL other layers are NOT
selected.
 * Select process job
 * if you will use this process a lot save this
cam setup as so that you can reuse it again

Open the TDA2822verA.ps file with
Ghostview for printing and print it onto an over
head transparency. Make sure you can see
the drill holes!

38

3.6 PCB Making

PCB Board Layers

Measure, Cut:
Photosensitive board is expensive, so it is
important not to waste it and cut it to the
right size.
It is also sensitive to ordinary light so when
cutting it don’t leave it lying around.

Expose:
This over head projector is a great source of
UV – ultra violet light, it takes three minutes
on the OHP in my classroom.
The overhead transparency produced earlier
must have some text on it. The text acts as
a cue or indication of which way around the
acetate and board should be. We want the
text on the board to be around the right way.

Develop:
The developer chemical we use is sodium
metasillicate which is a clear base or alkali.
It will ruin your clothes so do not splash it
around, it is a strong cleaning agent!
It should be heated to speed up the process.
The development process takes anywhere
from 20 seconds to 2 minutes. The reason
being that the chemical dilutes over time
making the reaction slower.
The board should be removed twice during
the process and washed gently in water to
check the progress.

39

Rinse:
The developer must becompletely removed
from the board.
At this stage if there is not time to etch the
board, dry it and store it in a dark place.

Etch:
The etching chemical we use if ferric
chloride, it is an acid and will stain your
clothes.
The tank heats the etching solution and
there is a pump to blow bubbles through the
liquid, this speeds the process up radically
so always use the pump.
Etching may take from 10 to 30 minutes
depending upon the strength of the solution.

Rinse:
Thorughly clean the board.

Remove Photosensitve Resist:
The photosensitive layer left on the tracks
after etching is complete must be removed.
Thee asiest way to do this is to put the
board back into the developer again. This
may take about 15 minutes.

40

Laquer:
The copper tracks on the board will oxidise
very quickly (within minutes the board may
be ruined), so the tracks must be protected
straight away, they can be sprayed with a
special solder through laquer (or tinned).

Drilling & Safety:
Generally we use a 0.9mm drill in class. This
suits almost all the components we use.
Take you time with drilling as the drill bit is
very small and breaks easily.
As always wear safety glasses!

Use a third hand:
When soldering use something to support
the board. Also bend the wires just a little to
hold the component in place (do not bend
them flat onto the track as this makes them
very hard to remove if you make a mistake).

41

4 Soldering, solder and soldering irons
Soldering is a process of forming an electrical connection between two metals.
 The most important point is GOOD THINGS TAKE TIME, SO TAKE YOUR TIME!
Quick soldering jobs can become really big headaches in the future, and people learning to solder
tend to be quick because either they believe the temperatures will damage the components or
they think of the solder as glue.

Soldering is best described therefore as a graceful process.

So approach it from that way, always slowwwwing down to get a good soldering joint.

Follow these simple steps to get the best results.

1. The materials must be clean.
2. Wipe clean the iron on a moist sponge (the splnge must not be dripping wet!)
3. The iron must be tinned with a small amount of solder.
4. Put the tinned iron onto the joint to heat the joint first.
5. The joint must be heated (be aware that excessive heat can ruin boards and components)
6. Apply the solder to the joint near the soldering iron but not onto the iron itself.
7. Use enough solder so the solder flows thoroughly around the joint- it takes time for the

solder to siphon or capillary around all the gaps.
8. Remove the solder.
9. Keep the iron on the joint after the solder for an instant.
10. Remove the soldering iron last – do not clean the iron, the solder left on it will protect it from

oxidising
11. Support the joint while it cools (do not cool it by blowing on it)

DO NOT - DO NOT - DO NOT - DO NOT repeatedly touch and remove the soldering iron on a
joint this will never heat the joint properly, HOLD the iron onto the joint until both parts of it
COMPLETELY heat through .s

When you are soldering properly you are following a code of practice

42

4.1 Soldering facts

 Currently the solder we use is a mix of tin and lead with as many as 5
cores of flux. Don’t use solder whichis too thick.

 When the solder flows smoothly onto surfaces it is know as "WETTING".

 Flux is a crucial element in soldering it cleans removing oxidisation and
prevents reoxidisation of components by sealing the area of the joint as
solder begins to flow. It also reduces surface tension so improves
viscosity and wettability.

 Our use of lead solder may change in the future with the trend to move to non lead based
materials in electronics.

 If a solder joint is not heated properly before applying more solder or the solder is applied to
the iron not the joint then the flux will all burn away or evaporate before it can do its proper
job of cleaning and sealing the materials.

 A new alloy of tin and copper must be formed for soldering to have taken place, it is not
gluing!

 The new alloy must have time to form, it will only be around 4-6 um thick

 As solder goes from a solid to a liquid it goes through a plastic state. This is the state of risk
for your joint, if something moves during that time the solder will crack.

 It is for this reason that we don't dab at a joint with a hot iron, the joint never really becomes
hot enough to melt the solder hence no wetting takes place and the joint is going to be
unreliable. If you apply the solder to the joint not the iron you will know the joint is hot
enough because the solder will melt.

 Flux is useful for only about 5 seconds. Reheating joints without fresh solder often doesn't
do much good, in fact it could even damage them.

 Too much heat on components during soldering can destroy the component or lift the tracks
from the PCB.

 If components get very hot while your circuit is on, then they can deteriorate your solder
joint and cause it to fracture.

 Soldering provides a certain amount of mechanical support to a joint, however be careful as
to how much support you expect it to give. Very small components through the holes in a
PCB are fine, some larger components may need other support, often just bending the legs
slightly before soldering is enough.

4.2 Soldering Safety

 Lead is a poison so don’t eat solder!

 Solder in a well ventilated area as the fumes coming form the solder are the burning flux
and are a nuisance in that they can lead to asthma.

 The soldering iron needs to be hot to be useful around 360 degrees Celsius - it will burn
you!

 Good solder joints

43

4.3 Soldering wires to switches

LED's and Switches are most often attached to the circuit board with wires. These
must be correctly measured, cut, stripped and soldered.

Step 1:

Step 2:

Step 3:
GET YOUR SOLDERING CHECKED
The solder should cover the joint fully, and after the joint has cooled the
wire should not be able to move in the switch contact.

Ztep 4:

Follow these recommended codes of practice with your work

44

4.4 Codes of practice

Codes of practice are industry recognized ways of carrying out work on your project, so that it is
safe for users and provides reliable operation. But how important are they?

This metal strip is a “wear strip”, it should have been made from stainless steel but was however
made from titanium which is much stronger. A “wear strip” is a sacrificial metal strip that protects
an edge on an aircraft; it is designed to be worn away with friction.

This titanium strip was a replacement part on a Continental Airways DC-10 aircraft. It was also not
properly installed. The strip fell off the DC10 onto the runway at Charles de Gaulle airport, north of
Paris on July 25, 2000.

The next aircraft to take off was an Air France Concorde. Before a Concord takes off the runway
was supposed to be inspected and cleared of all foreign objects, this was also not done. The
aircraft picked up the strip with one of its tires. The titanium strip caused the tire to burst, sending
rubber fragments up into the wing of aircraft.

The aircraft stores its fuel in tanks in the wing. The wing is not very thick material and the tank
burst open, the aircraft leaked fuel which ignited, sparking a bigger fuel leak and fire that brought
the plane down.

The Air France Concorde crashed in a ball of flames 10km passed the runway, killing all 109
people aboard and four people at a hotel in an outer suburb of Paris.

Since the incident all Concorde aircraft have been retired from service, and in July 2008 it was
determined that 5 people would stand trial for the crash.

So how important are codes of practice?
So how important is your soldering?

45

4.5 Good and bad solder joints

The finished solder joint should be
cone shaped and bright in colour

When a solder joint is correct there
will be a new alloy od Sn-Cu formed
between the solder and the track or
component lead.

Too little solder, not enough
heat

Too much solder

Heated only the pcb track

Too much solder,
it has flowed onto another trac
k

Too little solder

Heated only the leg of the
component

Only soldered on one side of
the leg

A whisker of solder is touching
another track

Forgot to solder it!!

46

4.6 Short circuits

Can you spot the short circuits in these pictures?

47

Here the upper short circuit is between
two of the tracks that connect to the
programming pins, so the board wouldn’t
program.
The lower short was noticed at the same
time, but wouldn’t havebecome a
problem until either B5 or B6 were used

Here there is a possible short at the top
left as the wire hasn’t been trimmed and
bent over onto ro nearly onto the other
track, the right hand short is between
positive and negative, so the batteries
were getting really hot!!

Watch out, shorted batteries might
actually burst into flame.

Can you see the short between the
battery connections here?

48

4.7 Soldering wires to LED’s

LED's and Switches are most often attached to the circuit board with wires. These must be
correctly measured, cut, stripped and soldered.
To begin improving your accuracy practically keep to these measurements

Step 1:

Step 2:

Step 3:

Step 4:

Step 5: GET YOUR SOLDERING CHECKED

Step 6: CHECK THAT YOU GOT YOUR SOLDERING CHECKED!!!

Step 7:

Heatshrink needs to provide BOTH mechanical and electrical cover!

49

5 Introductory Electronics Theory

5.1 Making electricity

Electronic circuits need energy, this energy is in the form of moving charges(electrons)

 There are a number of ways that we can get charges moving around
circuits.

 from chemical reactions (cells, batteries and the newer fuel cells),
 from magnets, wires and motion (generators and alternators),
 from light (photovoltaic cells),
 from friction (electrostatics e.g. the Van de Graaff generator),
 from heat (a thermocouple),
 from pressure (piezoelectric).

5.1.1 Cells

A cell is a single chemical container, and can produce a voltage of 1.1 volts to 2 volts depending on its
type.

In the diagram on the copper side there are plenty of electrons(-), on the zinc side (+) there is an
absence of electrons.

Here is a tomato cell powering an LCD clock.

Lemons make good cells too!

5.1.2 Batteries

A battery is a collection of cells in series e.g. a 12 volt car battery is
six 2 volt lead-acid cells in series.

50

5.1.3 Different types of cells

 Primary cells (not rechargeable)
o Zinc-carbon - inexpensive AAA, AA, C and D dry-cells and batteries. The electrodes are zinc

and carbon, with an acidic paste between them that serves as the electrolyte.
o Alkaline - Used in common Duracell and Energizer batteries, the electrodes are zinc and

manganese-oxide, with an alkaline electrolyte.
o Lithium photo - Lithium, lithium-iodide and lead-iodide are used in cameras because of their

ability to supply high currents for short periods of time.
o Zinc-mercury oxide - This is often used in hearing-aids.
o Silver-zinc - This is used in aeronautical applications because the power-to-weight ratio is

good.
 Secondary Cells (Rechargeable)

o Lead-acid - Used in automobiles, the electrodes are made of lead and lead-oxide with a
strong acidic electrolyte.

o Zinc-air - lightweight.
o Nickel-cadmium - The electrodes are nickel-hydroxide and cadmium, with potassium-

hydroxide as the electrolyte.
o Nickel-metal hydride (NiMh).
o Lithium-ion - Excellent power-to-weight ratio.
o Metal-chloride

5.1.4 Electrostatics

When certain materials such as wool and a plastic ruler are rubbed against each other an electric
charge is generated. This is the principle of electrostatics.

The rubbing process causes electrons to be pulled from the
surface of one material and relocated on the surface of the other
material.

As the charged plastic moves over a piece of paper the electrons
within the paper will be repelled (The paper is an insulator so the
electrons cannot move far). This causes a slight positive charge
on the paper.

This will mean that the negatively charged plastic will attract and

pick up the positively charged paper (because opposite charges attract).

The positive side effects of Static Electricity

Smoke stack pollution control, Air fresheners, Photocopiers, Laser Printers, Car Painting,

The negative side effects of static electricity

Lightning
Sparks from car – they hurt,
Damage/reduce life of electronic components
Danger around any flammable material (like at petrol stations)

51

5.2 ESD electrostatic discharge

Ever got a shock getting out of a car? That is caused by a build up of static electronicty. Electronic
components can be damaged by the high voltage of static electricity that we produce by waking around
(we can easily generate several thousand volts). A large industry exists to provide anti-static devices to
prevent static electricity from damaging electronic components.

52

5.3 Magnets, wires and motion

When a wire moves in a magnetic field
electricity is produced. This picture shows the
process of generating electricity from motion.

This mechanical torch has no batteries, this means that it
will only generate electricity while the lever is being
worked.

Turning the hand crack on the front of this radio will charge the internal rechargeable
batteries. A one minute crank will give 30 minutes of listening; 30minutes of cranking
will fully charge the batteries for 15 hours of listening

5.4 Group Power Assignment

In groups of six, choose one of the following each:
A. Power stations: Geothermal, Gas Fired, Hydro, Wind, Solar, Wave
Describe in detail its operation, typical uses, hazards, advantages and disadvantages, where it is used
(if used) In New Zealand
B. Cells and Batteries
Zinc Carbon, Alkaline, Lithium, Lead Acid, NiCad, NiMh
Describe in detail its operation, typical uses, hazards, advantages, disadvantages

 Achieved Merit Excellence

Power Station
technology

Diagram, location(s),
some attempt at
description of
operation in own words

Pictures and
Diagrams with clear
descriptions of
operation.

Thorough explanations and
clear diagrams and pictures of
working, sources are
referenced.

Battery / Cell
Technology

Diagram, location(s),
some attempt at
description of
operation in own words

Pictures and
Diagrams with clear
descriptions of
operation.

Thorough explanations and
clear diagrams and pictures of
working, sourc, explains mAH
ratings, energy to weight ratio,
sources are referenced

In your group you will need to agree on a common format for presentation: A2, A3 or Web, fonts,
colours, layout. You will have 2 periods in class to work on this together. Please do not copy
information straight from wikipedia or some other source, write the information in your own words.

53

5.5 Electricity supply in New Zealand

In Auckland the mains
power comes up from
power stations in the
south via over head
lines that carry voltages
of 220,000 Volts
(220kV) at thousands of
amps.

54

5.6 Conductors

When a difference in energy exists in a circuit electrons (charges) want to flow from
the negative to the positive.

Materials that allow charges to flow freely are called conductors. Insulators are
materials that do not allow charges to move freely.

Materials that have high conductivity are silver, gold, copper, aluminium, steel and
iron.

To understand why these are good conductors some knowledge about atoms is

required. Everything is made up of atoms or structures of atoms. Atoms themselves are made of a
nucleus of protons and neutrons surrounded by numbers of electrons. The electrons spin around the
nucleus. Electrons have a negative charge, protons a positive charge, neutrons no charge. The sum of
all charges in a normal atom is zero making the atom electrically neutral.

The numbers of different neutrons, protons and electrons determine what type of material something
is. With larger atoms the nucleus contains more protons and neutrons, and the electrons are arranged
in layers or shells.

Less electrons in the outer shell means that a material is better at conducting.

A single electron in an outer shell on its own tends to be held weakly or loosely
bound by the nucleus and is very free to move. This is shown in the copper atom.
The atoms in the outer shell are known as Valence electrons

5.7 Insulators

When the outer shell of an atom is full there are no free electrons, these tightly bound valence electrons
make the material better at insulating, i.e. no current can flow.
Insulators are used in electronics just as much as conductors to control where current flows and where it
doesn't.
An insulating material can break down however if enough voltage is applied.

55

5.8 Choosing the right wire

We use different types of wire for different jobs. Wires can be categorised by the number and diameter
of the strands and whether they are tinned or not.

Collect samples of the different types of wire used in class, label each with the wires by its
characteristics: e.g. single or multi-stranded, tinned or un-tinned and number and thickness of the
strands.

Tinned single strand 0.25mm

Solid core wire is really useful for breadboard use, but really bad for anytime the wire will be moved a lot
as it breaks easily.

Multistranded wire is great for anytime the wire is moved, choose a thicker wire for high power.Tinned
wire (looks like it has solder on it already) is great as it doesn’t corrode/oxidise and so it is easier to
solder.

7/0.2 wire we use a lot in classroom means 7 strands each 0.2mm in diameter, giving a total area of
0.22mm2 . This can carry currents upto 1amp. We have thicker wire with more strands for higher current
use.

NOTE: we use red for 5V, black for ground (0V/negative) and Yellow for voltages over 5V in the
workshop.

56

5.9 Resistors

 Resistors reduce the current (flow of electrons/charges) in a circuit.

The unit of resistance is ohms and the symbol is the Greek symbol
omega. (Note that we often use the letter R on computers because an
omega is harder to insert.)

Resistors can be variable in value (used in volume controls, light
dimmers, etc) or fixed in value. Common fixed resistor types are Metal
Film and Carbon Film.

5.10 Resistor Assignment

Write a description of how a metal film resistor is constructed.
Write description of how a carbon film resistor is constructed.
Include pictures with both.

5.11 Resistivity

Resisitivity is the measure of how a material opposes electrical current, it is measured in ohm-meters.

Silver 1.6 x 10 -8 Ω/m 0.000000016 Ω-m Silver cadmium oxide is used in high
voltage contacts because it can withstand
arcing, resists oxidation

Gold 2.44 x 10-8 Used in sliding contacts on circuit boards,
more corrosion resistant than silver, resists
oxidation

Copper 1.68 10-8 Electrical hookup wire, house wiring,
printed circuit boards

Aluminium 2.82 x 10-8 Used in high voltage power cables, it has
65% of the conductivity by volume of
copper but 200% by weight

Tungsten 5.6 x 10-8 High melting point so good for lightbulbs

Iron 1 x 10-7 Used to make steel

Tin 1.09 x 10-7 Used in Solder

Lead 2.2 x 10-7 Used in solder

Mercury 9.8 x 10-7 Used in tilt switches, because it is liquid at
room temperature

Nichrome 1 x 10-6 Used in heating elements

Carbon 3.5 x 10-5 Used in resistors

Germanium 4.6 x 10-5 Was used in making diodes and transistors

Seawater 2 x 10-1

Silicon 6.4 x 102 640 Ω-m Used as the main material for
semiconductors

pure water 2.5 x 155 Doesn’t conduct!

Glass &
porcelain

1 x 1010 Used in power line insulators

Rubber 1 x 1013 Insulating boots for electrical workers

Quartz
(SiO4)

7.5 x 1017 silicon–oxygen tetrahedral -used for its
piexo electric properties

PTFE
(Teflon)

1 x 1024

Polytetrafluoroethylene, insulation for wires

57

5.12 Resistor prefixes

Some common resistor values are 1k (1,000) 10k (10,000) 1M (1,000,000) 2k2 (2,200) 47k (47,000).
Conversions between, ohms, kilo and Mega are very important in electronics.
So how do you remember that 1 kOhm = 1000Ohms or 22,000 Ohms = 22k?
First know that the prefixes are normally in groups of thousands and secondly writing them into a table
helps.

Giga Mega kilo milli micro nano pica

G M k R m u n p

 1 0 0 0 0 0 0

 2 2 0 0 0

 0 1 4

 1 8 2 0 0

 2 0 0 0 0 0 0 0

1Mohm = 1,000,000 ohms
22k ohms = 22,000 ohms

2.2 ohm = 2R2 ohms
4,700 = 4k7 ohms

Every conversion in in groups of three or thousands so decimal points and commas can only go
when lines are shown on the table Note the special case in electronics where we use 2k2 not
2.2K. The reason for this is that when a schematic or circuit diagram is photocopied a number of
times then the decimal point may disappear leaving 2.2 as 22. This cannot happen when using
2k2 (2,200), 2R2 (2.2) or 2M2 (2,2000,000).

Convert the following:

Ohms Correctly formatted

1500 1K5

5,600,000 5M6

3,300 3k3

12.5 12R5

9,100,000

22,000

4,700

5.6

10,000

9100

1.8

22,400

10.31

100,000

1000k

4,300,000

0.22

3,900K

91,000

3.1k

58

5.13 Resistor Values Exercises

Resistor values are normally shown on the body of the resistor using colour codes
There are 2 schemes, one with 4 bands of colour and one with 5 bands of colour

The colour code is

You will need some practice at using this table.

59

Here are some common values

1st band, Bn = 1
 2nd band, R = 2
 3rd band, BK = 0
 4th band, Y = 0000 (4 zero’s)

 5th band, Bn = 1%

Answer: 1,200,000 ohm, +/-1% = 1M2

1st band: Y_____
 2nd band: Pu_____
 3rd band: Bk_____
 4th band: Bk_____
 5th band: Bn_____
 Answer:

1st band: BN_____
 2nd band: Bk_____
 3rd band: Bk_____
 4th band: Bk_____

 5th band: Bn_____
 Answer

 1st band: BN_____
 2nd band: Bk_____
 3rd band: Bk_____
 4th band: BN_____
 5th band: Bn_____
 Answer:

1st band: Or_____
 2nd band: Or_____
 3rd band: Bk_____
 4th band: R_____

 5th band: Bn_____
 Answer

1st band: BN_____
 2nd band: Bk_____
 3rd band: Bk_____
 4th band: R_____
 5th band: Bn
 Answer:

1st band: Or_____
 2nd band: Wh_____
 3rd band: Bk_____
 4th band: Bk_____
 5th band: Bn_____
 Answer:

1st band: Gn_____
 2nd band: Bu_____
 3rd band: Bk_____
 4th band: Bk_____
 5th band: Bn_____
 Answer:

1st band: Bn_____
 2nd band: Bk_____
 3rd band: Bk_____
 4th band: Gold_____
 5th band: Bn_____
 Answer:

1st band: BN_____
 2nd band: Bk_____
 3rd band: Bk_____
 4th band: Silver_____
 5th band: Bn_____
 Answer:

1st band: Y_____
 2nd band: Pu_____
 3rd band: BK_____
 4th band: Gold_____
 5th band: Bn_____
 Answer:

Find the colour codes for the following resistors (5 band)
1K2 1% (1,200 ohms = Bk – Rd – Bk – Bn __ Bn)

18k 1%

4M7 1%

8K2 1%

60

5.14 Capacitors

There are two different symbols for the two main categories of capacitors

and many several types within each category

Polarised

such as an electrolytic

Note the 25V voltage rating on the above
electrolytic and the 16V rating on the one below, all

capacitors are rated up to a particular voltage,
exceeding this may cause the capacitor to overheat

leak and even explode!

 and tantalum

non polarised

such as ceramic

Values will be written on these capacitors,
generally in picofarads and in code

104 = 100,000 pF
(means 10 + 4 more zeros)

The main one of these we use in the workshop
will be the 0.1uF = 100nF = 100,000pF

There are polyester types as well

Values will be written on these capacitors,
generally in microfarads (uF)

They are polarised (have a positive and a

negative legs) – the positive leg is the longer
one and there is a line on the body of the
capacitor to show whcihc side is negative.

61

5.15 Component symbols reference

Get to know the first 11 of these straight away

Resistor

Diode

FET

Battery

LDR -
Light Dependent
Resistor

LED - Light
Emitting Diode

Wires – joined
(junctions used)

Wires –
unjoined (no
junction)

Switch

Capacitor
(non polarised
type)

Ground, Earth or 0V
Capacitor

Capacitor
(polarised type
e.g.electrolytic)

 Zener Diode

Motor

PNP Transistor

Variable
Resistor
(or
Potentiometer)

Speaker

NPN Transistor

Thermistor
(senses temperature)

Piezo or crystal

Relay

Transformer

Microphone

62

5.16 Year 10/11 - Typical test questions so far

Darkness Detector
1. What are the color codes for all the resistors used in the darkness detector?
2. Draw the circuit for the darkness detector
3. What is the diode for?
4. Draw a breadboard with a resistor, LED, switch and battery connected so that the LED lights

up?
5. How can you tell the right way to put in an LED?
6. What is your electronics teachers favourite type of chocolate?
7. What does LED stand for?
8. What does LDR stand for?
9. When a switch is turning a circuit on and off what is it actually doing?
10. What is the LDR for?
11. What components make up the input part of the circuit?
12. What components make up the output part of the circuit?
13. What components make up the process part of the circuit?
14. What components make up the power supply part of the circuit?

Soldering
15. What is solder made of?
16. What is flux for?
17. What temperature is a soldering iron?
18. What is a code of practice?
19. Think of at least one terrible thing that could go wrong due to poor soldering
20. Why must the sponge be damp but not wet?
21. Describe three types of bad solder joints
22. Describe a good solder joint
23. Why do we put heatshrink over wires?

General electronic theory
24. What is current?
25. Where does electricity come from in NZ?
26. What is the voltage of a AA cell?
27. When is static electricity bad?
28. Does current flow in a circuit? (trick question!)
29. Why do some things conduct and others not?
30. Name three conductors used in electronics.
31. What are some different types of wire and where do we use each one?
32. Use a resistor colour code table to find the values of 3 different resistors used in the workshop.
33. Draw and name the first 11 symbols in the symbol table

.

63

6 Introduction to microcontroller electronics

Microcontrollers are a fundamental electronic building block used for many solutions to needs
throughout industry, commerce and everyday life.

They are found inside aircraft instruments.

 They are used extensively within cellular phones, modern
cars,

domestic appliances such as stereos and washing machines

and in automated processes through out industry

64

6.1 What is a computer?

A computer system that we are familiar with includes components such as DVD writers, hard drives, a
motherboard which has a CPU, RAM and other things on it, and a bunch of I/O devices connected to it.

6.2 What does a computer system do?

 A computer carries out simple maths on data.

Data is information which is input from I/O devices and stored inside the computers memory
devices in the form of binary numbers.

But don’t computers do complex things? Yes, but as you will learn, the art of computer science is to
break big complex tasks down into a lot of simple tasks.

65

6.3 What exactly is a microcontroller?

A microcontroller has the same things in it that bigger computers have, data and program storage, I/O
control circuits and a CPU (cental processing unit) however it is inside a single IC package.

The purpose of the parts of a microcontroller are exactly the same as in a larger computer. Data and

programs are stored in memory and a CPU carries out simple maths on the data.

However don't think that because a microcontroller is smaller than a PC that it is the same comparison
as between a real car and a toy car. The microcontroller is capable of carrying out millions of
instructions every second. And there are billions of these controllers out there in the world doing just
that. You will find them inside cars, stereos, calculators, remote controls, airplanes, radios, microwaves,
washing machines, industrial equipment and so on.

66

6.4 What does a microcontroller system do?

As with any electronic circuit the microcontroller circuit is a system with three parts,: INPUT, PROCESS
(or CONTROL) and OUTPUT. Input circuits convert physical world properties to electrical signals
(current/ voltage) which are processed and converted back to physical properties (heat, light etc)

In a microcontroller there is a second conversion, where the electrical properties of voltage and current
are changed to data and stored in memory. The programmer writes programs
(program code) which are made up of input instructions (convert electrical signals from input circuits to
data), control instructions (which work on data) and output instructions (convert data to electrical
signals)

1. Input circuits convert light, heat, sound etc to voltages and currents.
2. Input instructions convert the electronic signals to data (numbers) and store them in its data

memory (RAM) – A variable is the name for a RAM location.
3. The processor runs a program which carries out mathematical operations on data or makes

decisions about the data
4. The output code converts the data (numbers) to electronic signals (voltage and current).
5. Output circuits convert electronic signals to light, heat, sound etc

In a microcontroller circuit that creates light patterns based upon sounds the control process is

SOUND to ELECTRICITY to DATA
Processing of the DATA (numbers)

DATA to ELECTRICITY to LIGHT

67

6.5 Getting started with AVR Programming

Microcontrollers, such as the ATMEL AVR, are controlled by software and they can do nothing until they
have a program inside them.

The AVR programs are written on a PC using BASCOM-AVR.
This software is a type of computer program called a compiler, it comes from www.mcselec.com. It
comes in a freeware version so students may download it and use it at home.

The AVR is connected to the PC with a 5 wire cable.

6.6 Breadboard

Often in electronics some experimentation is required to prototype (trial) specific circuits. A prototype
circuit is needed before a PCB is designed for the final circuit.

A breadboard can be used to prototype the circuit. It has holes into which components can be inserted
and has electrical connections between the holes as per the diagram below.

Using a breadboard means no soldering and a circuit can be constructed quickly and modified easily
before a final solution is decided upon.

68

6.7 Breadboard+Prototyping board circuit

This prototyping board along with a breadboard works well for trialling circuits.

69

On this breadboard a single LED has been setup along with the ground wire to complete the circuit.

70

6.8 Checking your workmanship

Check your workmanship, if you fins any problems it is a good idea to ask the teacher what to do to fix
it, you don’t want to damagee the board while trying to fixing it. Check all the following:
The value of the resistor is 10K, the diode is the right way around, the IC is in the right way, the two links
are in, the 8 way and 10 way sockets are in the rows of holes closest to the IC, the Electrolytic capacitor
is in the rght way, the battery pack red wire is in VCC, the black wire is in GND.

Us the soldering good enough? Are there long wires left uncut (A,B,C)? Any solder joints that don’t look
like volcanoes(C,D). Any solder between tracks causing short circuits(E)?

71

6.9 Output Circuit - LED

There is an LED with a 1k ‘current limit’ resistor. An LED needs only 2V to operate so if
connected without a resistor in series too much current would flow and destroy the LED. With 2V
across the LED, there will be 3V across the resistor, and the current will be limited to (V/R)
3/1000 = 3mA. This is enough current to make the LED clearly visible but not too much for the
micro to provide.

6.10 AVR programming cable

A five wire cable is needed to connect the AVR circuit to a PC.
It connects the PC’s parallel port to the AVR circuit. One end has a DB25M connector on it (as in this
picture)

The other end has a 10 way IDC socket attached to it (as in this picture). These were used because
they are readily available even though only 5 conductors are required the 10 wires are connected to the
DB25 in 5 pairs. Put heatshrink over the resistor connections to stop them shorting together.

72

6.11 Getting started with Bascom & AVR

BASCOM-AVR is four programs in one package, it is known as an IDE (integrated development
environment); it includes the Program Editor, the Compiler, the Programmer and the Simulator all
together.

After installing the program there are some set-up options that you might want to change.
If its not already setup from the menu select.
OPTIONS – PROGRAMMER and select Sample Electronics programmer. Choose the parallel tab
and select LPT-address of 378 for LPT1 (if you only have 1 parallel port on the computer choose this),
also select autoflash.
The following are not absolutely necessary but will help you get better printouts.
OPTIONS – PRINTER change the margins to 15.00 10.00 10.00 10.00
OPTIONS – ENVIRONMENT – EDITOR change the Comment Position to 040.

6.12 The compiler

The command to start the compiler is F7 or the black IC picture in the toolbar.
This will change your high-level BASIC program into low-level machine code.
If your program is in error then a compilation will not complete and an error box will appear. Double
click on the error to get to the line which has the problem.

6.13 The programmer

When you have successfully compiled a program pressing F4 or the green IC picture in the toolbar
starts the programmer. If no microcontroller is connected an error will pop up. If the IC s connected
then the BASCOM completes the programming process and automatically resets your microcontroller to
start execution of your program.

73

6.14 An introduction to flowcharts

Flowcharts are an incredibly important planning tool in use not just by software designers but by many
professionals who communicate sequences and actions for systems of all types.

Flowchart Symbols

Daily Routine FlowChart

This is a process step, where procedures
are carried out

This is an Input or Output process step
where

Here we test to see if something is true or
false.

74

6.15 Bascom output commands

Flash1LEDv1.bas

Type the code below into BASCOM, save it, then F7 to compile and then F4 to program

‘ Flash1LEDv1.bas
'--

' Compiler Setup (tell Bascom about our micro)

$regfile = "attiny461.dat" 'wgich micro

$crystal = 1000000 'its speed

'--

' Hardware Setups

' (these tell bascom how to setup our micro)

Config Porta = Output 'LEDs on port

'--

' Declare Constants

' (these tell bascom names we will use for numbers

' in our program, this makes it easy

'to change things quickly later)

Const Flashdelay = 250 ‘ preset how long a wait will be
'--

Do ‘start of a loop
 PortA.7 = 1 ‘ LED 7 on
 Waitms Flashdelay ‘wait a preset time
 PortA.7 = 0 ‘LED 7 off
 Waitms Flashdelay ‘wait a preset time
Loop ‘return to do and start again
End

YOU NEED TO INDENT CODE BETWEEN
ALL CONTROL STRUCTURES SUCH AS
WITH THIS DO-LOOP, it really helps make
your code more readable and easier to debug!
Use the TAB key in Bascom to do it.

75

This is a typical first program to test your hardware
Every line of the code is important.

$regfile=”attiny461.dat”, Bascom needs to know which micro is being used as each micro has different
features; this is the name of a file in the Bascom program folder with every detail about the ATTiny461.

$crystal=1000000, This line tells Bascom the speed at which our microcontroller is executing operations
1 million per second)so that Bascom can calculate delays such as waitms properly

Config porta=output, each I/O must be configured to be either an input or output; (it cannot be both at
once)

Const Flashdelay=150, ‘constants’ are used in a program, it is easier to remember names and it is
useful to keep them all together in one place in the program (this is a code of practice).

DO - LOOP statements enclose code which is to repeat forever; when programming it is important to
indent (tab) code within loops; this makes your code easier to follow (this is a code of practice).

Waitms flashdelay wait a bit, a microcontroller carries out operations sequentially, so if there is no pause
between turning an LED on and turning it off the led will not be seen flashing

Output Code

PortA.7 =1 make porta.7 high (which will turn on the LED connected to that port)
PortA.7 = 0 make porta.7 low (which will turn off the LED connected to that port)

6.16 Exercises

1. When a computer monitor is in standbay mode often an LED is going to alert the user that the power
is left on but ther ei s no signal to the monitor. Sometimes thisis a permanently on LED
sometimes it is a slow flashing one Find the value of Flashdelay so that the LED is on for 2
seconds and off for 2 seconds

2. Find the value of Flashdelay so that the LED is on for ½ a second and off for ½ a second
3. Find the value of Flashdelay so that the LED is on for 5 seconds and off for 5 seconds

76

6.17 Two delays

 Often pieces of equipment have a flashing LED that is on very briefly then off for a long time. E.g. on for
0.15Seconds (150mSec) and off for a second (1000mSec)

Flash1LEDv2.bas

This program has TWO delays one for the on time and one for the off time

‘ Flash1LEDv1.bas
'--

' Compiler Setup (this tell Bascom things about our

micro)

$regfile = "attiny461.dat" 'bascom must know the

micro

$crystal = 1000000 'bascom must know its speed

'--

' Hardware Setups

' (these tell bascom how to setup our micro)

Config Porta = Output 'LEDs on port

'--

' Declare Constants

' (these tell bascom names we will use for numbers

' in our program, this makes it easy

'to change things quickly later)

Const Ondelay = 150 ‘how long an LED will be on for
Const Offdelay = 1000 ‘how long an LED will be off for
'--

Do ‘start of a loop
 PortA.7 = 1 ‘ LED 7 on
 Waitms Ondelay ‘wait a preset time
 PortA.7 = 0 ‘LED 7 off
 Waitms Offdelay ‘wait a preset time
Loop ‘return to do and start again
End

4. Change the on time to the smallest possible length you can see

5. A piece of equipment that has a flashing LED like this is sometimes referred to as having a ‘heatbeat’
indicator to show it is ‘alive’ or on. Change the on and off time to match your heart beat.

REMEMBER YOU NEED TO INDENT CODE
BETWEEN ALL CONTROL STRUCTURES SUCH
AS WITH THIS DO-LOOP, Use the TAB key

77

All sorts of ‘heartbeat’ indicators can be used in equipment to show it is on.
Double flashes are common ands some equipment might have a short then a
long flash like this program.
It needs three delays:
 Const Ondelay1 = 50
 Const Ondelay2 = 500
 Const OFFdelay = 200
Write this program then modify it to make what you think is a good heartbeat.

6.18 Syntax errors -‘bugs’

Playing around will develop your understanding, carry out AT LEAST these to see what happens

 What happens if you change Const Flashdelay to Const faslhdelay? (deliberate spelling error)

 What happens if $crystal = 10000000 or 100000 instead of 1000000?

 What happens if your change the $regfile to "attin26.dat”? (deliberate spelling eror)

 What happens if one of the waitms flashdelay statements is deleted (look closely at the LED)?

 What happens when the two waitms flashdelay statements are deleted (look closely at the LED)?

In programming we call these syntax errors. It’s like having a conversation with a person whose first
language is different to your own and they get the order of words in a sentence jumbled or use the
worng word. We can generally get the meaning of the sentence but computers cannot understand the
small mistakes that a programmer makes. The syntax has to be 100%.
E.g. Cup tea make me you or time when lunch is or stop bus where is we can make meaning fo these
but a computer cannot make sense between flasshdelay and flashdelay.

78

6.19 Microcontroller ports: write a Knightrider program using LED’s

Learn about controlling ports.
Ports are groups of 8 I/O pins.

If we have 8 LEDs connected to portA we could control them individually

HOWEVER…there is a better way..

we should use the commands to control the whole port
at once

79

You already have 1 LED
connected to portA.7 now
connect another 7 LEDs to
your microcontroller from
ports A.6 through to A.0
(each needs an individual
1k current limit resistor,
see the picture below) .
Write a program to flash all 8
LEDs in a repeating
sequence e.g.
'led1, 2, 3, 4, 5, 6, 7, 8. 7, 6,
5, 4, 3, 2, 1, 2, 3...
Use the following code to get
started

Porta=&B10000000
Waitms flashdelay
Porta=&B01000000
Waitms flashdelay
Porta=&B00100000
Waitms flashdelay
…
Using the above command
to control the whole port at
once is quicker and easier
for some applications than
individually controlling each
pin. You need to choose the
best way when thinking
about readability and
understandability.

6.20 Knightrider v2

As a second exercise rewrite the program so that three LEDs turn on at as in the Knightrider car.
Sequence = LED0, LED01, LED012, LED123, LED234, LED345, LED456, LED567, LED67,
LED7, LED67, LED567…

Success criteria to work on in your program
2. Use spaces to help layout your program so it
looks good
3. Comment your program with short clear
descriptions
4. Use constants with good names e.g. waitms
flashdelay not waitms 150
5. Keep a record of BOTH the schematic and layout
changes in your notebook

Remember that using a constant is meeting good
programming codes of practice; it means that when
you want to change the speed all you have to do is
change it in one place in the program. If you didn’t
use Const then you would have to go through your

80

whole program and change every waitms line individually.

6.21 Knightroder v3

Now we want to extend the pattern to cover 15 LEDs and both ports

'KnightRiderV3.bas

'Leds arranged

' 1 2 3 4 5 6 7 8 9 10 11 12'A.7 A.6 A.5

A.4 A.3 A.2 A.1 A.0 B.6 B.5 B.4 B.3(achieved level comments)

'this program shows how to write code which controls the whole port at

'once using the commands portA=&B00000001, rather than individual set

and ‘reset commands which are very wasteful of code space when multiple

LEDs ‘have to 'be controlled (excellence comment)

'--

' Compiler Setup (these tell Bascom things about our micro)

$regfile = "attiny461.dat" 'bascom needs to know the micro

$crystal = 1000000 'bascom needs to know its speed

'--

' Hardware Setups (these tell bascom how to setup our micro)

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Input 'switches on portB

' Hardware Aliases (these tell bascom names we will use for I/O devices

' attached to the Micro, names are easier to remember that ports)

Config Porta = Output

Config Portb = Output

'--

' Declare Constants (these tell bascom names we will use for numbers in

' ' our program, this makes it easy to change things quickly later)

' times have been made shorter for testing purposes

81

Const Delaytime = 25
Do

 Porta = &B10000000 '1 =A.7

 Waitms Delaytime

 Porta = &B01000000 '2 =A.6

 Waitms Delaytime

 Porta = &B00100000 '3 =A.5

 Waitms Delaytime

 Porta = &B00010000 '4 =A.4

 Waitms Delaytime

 Porta = &B00001000 '5 =A.3

 Waitms Delaytime

 Porta = &B00000100 '6 =A.2

 Waitms Delaytime

 Porta = &B00000010 '7 =A.1

 Waitms Delaytime

 Porta = &B00000001 '8 =A.0

 Waitms Delaytime

 'the hand over between ports requires 2 lines one to turn off the

 ' the LED one port and the other to turn on the LED on the other port

 ' (example of an merit level comment – it explains what you did)

 Porta = &B00000000 '8 off

 Portb = &B01000000 '9 =B.6

 Waitms Delaytime

 Portb = &B00100000 '10 =B.5

 Waitms Delaytime

 Portb = &B00010000 '11 =B.4

 Waitms Delaytime

 Portb = &B00001000 '12 =B.3

 Waitms Delaytime

 Portb = &B00010000 '11 =B.4

 Waitms Delaytime

 Portb = &B00100000 '10 =B.5

 Waitms Delaytime

 Portb = &B01000000 '9 =B.6

 Waitms Delaytime

 'the hand over between ports requires 2 lines one to turn off the

 ' the LED one port and the other to turn on the LED on the other port

 Portb = &B00000000 '9 off

 Porta = &B00000001 '8 =A.0

 Waitms Delaytime

 Porta = &B00000010 '7 =A.1

 Waitms Delaytime

 Porta = &B00000100 '6 =A.2

 Waitms Delaytime

 Porta = &B00001000 '5 =A.3

 Waitms Delaytime

 Porta = &B00010000 '4 =A.4

 Waitms Delaytime

 Porta = &B00100000 '3 =A.5

 Waitms Delaytime

 Porta = &B01000000 '2 =A.6

 Waitms Delaytime

Loop

End

82

6.22 Commenting your programs

Comments in your program code are used to explain (not just describe) to others what your
program is doing or how your program is doing it.

Take note of the commenting in the code above.– it is showing the reader which LED is coming on
and explains the special case of hand over of the LED control from one port to the other.

In your studies we often distinquish between describe=Achieved, explain=Merit and
justify=Excellence. Discuss would be where you explain and justify why you did it one way rather
than another. The code above is an excellence for commenting because it justifies why it works
the way it does!

If you can write good comments that explain thoroughly and where necessary discuss
your code you are an excellent programmer!

6.23 Learning review

1. Microcontrollers input and output pins are grouped into 8 and called ports.
 e.g. PORTA, or PORTB

2. Before we use a pin or port we must set it up as either an input or an output
 Config porta=output OR
 we can configure each pin separately config pina.3=output

3. The 8 pins in a port are numbered from 7 down to 0
 porta.7, porta.6, … porta.2, porta.1, porta.0

4. We can make each pin individually high or low
 e.g. porta.7 = 1 or porta.7 = 0

5. We can control all 8 pins at once
 Porta= &B10100011

This is the same as
 porta.7 = 1
 porta.6 = 0
 porta.5 =1
 porta.4 = 0
 porta.3 = 0
 port a.2 = 0
 port a.1 = 1
 porta.0 = 1

6. We can delay a microcontroller using program code
 Waitms 50

Or better still use a constant
 Const timedelay=50
 Waitms timedelay

7. Comments make your program more readable
 and especially explain how/why you did something

8. Programs are sequential and run forever within a
 Do-Loop

83

6.24 What is a piezo and how does it make sound?

A piezo is made from a nonsymmetrical crystal; these are
generally ceramic nowadays although the principle was
originally discovered in naturally occuring quartz (and other)
crystals. When a crystal has an electrical charge applied to it, it
moves in one direction. We make use of this property to
produce sound and also in ultrasonic cleaning and other things.
The opposite occurs too, if a crystal is moved or stressed a
voltage potential can be created. This property is put to work in
piezo lighters (such as in a bbq) and in ceramic microphones.
Modern ceramic type piezos are much more efficient than
natural quartz ones.

The piezo can be attached directly between a microcontrollers output pin and ground.

Bascom’s sound command can be used to
directly make a tone.

Piezo Alias Portb.6
Sound piezo, 500, 300 ‘that’s all that’s
required

The Bascom sound command has three
parameters (values) attached ot it.

 The port or pin of the microcontroller
used

 The duration of the sound (number of
pulses)

 The time the pin is high and low for.
This command is not easy to use to get
accurate tones from your AVR, but they do
make useful sounds. Experiment with the
sound command and make a series of tones
suitable for an alarm

84

6.25 Sounding Off

.
Add a piezo to your project, the piezo is connected to PortB.6, then see the layout pic on the next
page

85

This picture only shows the piezo, DO NOT REMOVE ALL YOUR LEDS

86

'--

' Compiler Setup (these tell Bascom things about our micro)

$regfile = "attiny461.dat" 'bascom needs to know the micro

$crystal = 1000000 'bascom needs to know its speed

'--

' Hardware Setups (these tell bascom how to setup our micro)

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Output 'piezo on portB
' Hardware Aliases (these tell bascom names we will use for I/O devices

' attached to the Micro, names are easier to remember that ports)

Piezo Alias PortB.6
'--

' Declare Constants (these tell bascom names we will use for numbers in

' ' our program, this makes it easy to change things quickly later)

' times have been made shorter for testing purposes

Const Flashdelay = 150

'--

'Program starts here

Do

 PortA = &B00000001

 Waitms Flashdelay

 PortA = &B00000010

 Waitms Flashdelay

 PortA = &B00000100

 Waitms Flashdelay

 PortA = &B00001000

 Waitms Flashdelay

 PortA = &B00010000

 Waitms Flashdelay

 PortA = &B00100000

 Waitms Flashdelay

 PortA = &B01000000

' insert the line below into your program where you want a beep to

happen

 Sound Piezo , 50 , 150
Loop

6.26 Sound exercises
1. Make the knightrider program beep a each change of the LED

 PortA = &B00000001

 Waitms Flashdelay

Sound Piezo , 50 , 150

 PortA + &B00000010

 Waitms Flashdelay

Sound Piezo , 50 , 150

2. Develop a short sequence of tones that increase in pitch

3. Try and create a simple tune

Don’t spend too much time on this (there is still more to learn)

87

6.27 Amp it up

If the piezo is not loud enough then you might like to add an amplifier to the output of your project.

The LM386 is an audio amplifier IC that is capable of upto 1.25Watts output.
The datasheet gives the following information

88

Can you see the difference between the two circuits, what has been added and where and which
way around to increase the amplification from 20 to 200. We can build one of these circuits easily
and quickly on breadboard to test it.

You will need a potentiometer, the diagram is not clear to beginners exactly what to do with the
connection so this is how you connect it.

89

To boost the power of this circuit the schematic from the datasheet on the previous page shows
an extra capacitor in the circuit. Can you add that to your circuit?

90

7 Microcontroller input circuits
A computer is not much use to us if it only has outputs we must have some inputs for the user or
the world to tell the computer what to do.

7.1 Single push button switch

A ‘pullup’ resistor is essential in this circuit, as when the switch is not
pressed it connects the input pin to a known voltage, if the resistor was
not there then the input pin would be ‘floating’ and give unreliable
readings. .

91

A lot of students get the switch wiring incorrect, here it has been broken down into two stages, first
put in the 10k resistor from the pin to 5V.

Next put in the Switch

Get a mulitimeter and check the voltage goes up and down when the switch is pressed and
released

92

7.3 Switch in a breadboard circuit

In this circuit make sure the schematic is
followed very closely.
The switch goes from the port to ground, the
resistor from the port to 5V

7.2 Pullup resistor theory

In this circuit the switch is connected without a
pull-up resistor. The input pin of the
microcontroller has no voltage source applied to it
and is said to be ‘floating’; the microcontroller
input voltage will drift, sometimes be high (5V),
sometimes low (0V) and is sensitive to touch and
static leading to very unreliable results.

In this circuit the 10k
resistor pulls the
microcontroller input pin
high (to 5V) making the
input reliable when the
switch is not pressed.

When the switch
is pressed the
voltage goes low
(0V).

93

7.4 Checking switches in your
program

There are two main methods of checking for
switch activity, we can wait until a switch is
pressed before we continue or we can test the
switch and if not pressed move on to do the rest
of our program

' check if switch pressed – main method
If Redsw = 0 then 'do this only if pressed

do_something
end if
…
…

' check if switch pressed – method 2

Do
Loop Until Redsw = 0 ' wait here until pressed
…
…

94

7.5 Program Logic – the ‘If-Then’ Switch Test

In this first program we would like the LED to change from off to on every time the switch is
pressed.

“When the switch is pressed toggle the LED”

'--

' Compiler Setup (tell Bascom about our micro)

$regfile = "attiny461.dat" ' the micro

$crystal = 1000000 ' its speed

'---

' Hardware Setups

' tell bascom how to setup our micro

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb.5 = Input 'switch on portB

' Hardware Aliases

' tell bascom names for I/O devices

' attached to the Micro

' names are easier to remember than ports

' when writing big programs

RedSw Alias Pinb.5 ' hardware alias
Led Alias PortA.7 ' hardware alias
Const waitdelay = 500

'--

' Program starts here

Do

 If Redsw = 0 Then ' wait for switch press

 Led = 1

 Waitms waitdelay

 Led = 0

 Waitms waitdelay

 End If

Loop

End

When the switch is pressed and held down, the LED will flash on and off at the rate determined by
the waitdelay value.
Notes:
- when the switch is released the LED will always turn off
- Without the delay we cannot see the LED toggle because the micro can toggle the LED

really fast, too fast for our eyes to see.

95

“When the switch is pressed toggle the LED”

'--

'Compiler Setup (tell Bascom about our micro)

$regfile = "attiny461.dat" ' the micro

$crystal = 1000000 ' its speed

'---

' Hardware Setups

' tell bascom how to setup our micro

' setup direction of all ports

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb.5 = Input 'switches on portB

' Hardware Aliases

' tell bascom names for I/O devices

' attached to the Micro

' names are easier to remember than ports

' when writing big programs

RedSw Alias Pinb.5 ' hardware alias
Led Alias PortA.7 ' hardware alias
Const waitdelay = 500

'--

' Program starts here

Do

 If Redsw = 0 Then ' wait for switch press

 Toggle Led

 Waitms waitdelay

 End If

Loop

End

This program also toggle the LED when you hold the switch down, HOWEVER when you release
the switch, sometimes it will be on and sometimes it will be off and the LED will stay that way.

7.6 If-then exercises

1. Modify the program so that inside the IF-THEN you have your tune played
2. Modify your progam so that inside the IF-THEN you have your knightrider
3. Extension excerise for quick students – get another 2 switches and use them to do different

things like play different tunes.

96

7.7 Switch contact bounce

We have another problem but this one is quite hidden from
us; it is called contact bounce.

When someone presses a push button switch the contacts
inside the switch move together very fast, and they actually
bounce several times together before staying closed. This
would be OK if the micro was as slow as we are, however
a switch bounce might last 2 or more millseconds, and our
microcontroller can detect things as fast as 1microsecond
so it might actually think the switch has been opened and
closed many times when we pressed it only once! Similarly
it might think the switch has been pressed several times
when we release it too!

 (sometimes you might see this at home with an old
lightswitch, sometimes when you turn the light on or off
there is a little glow tihin the switch that is sparking caused by the high voltage as the switch
contacts bounce.

In this circuit the voltage is being measured and you can see that the switch contacts have
bounced 4 times, our micro could easily sense all these bounces as you opening and closing the
switch really fast. In the next program we will add some delays to fix this issue.

97

“If the switch is pressed, only toggle the LED once

 To do this we check to see if the switch is pressed,

 then we wait a short bit (for the switch to stop any contact bouncing)

 then we wait for the switch to be released

 then we wait for a short bit (for the switch to stop any contact bouncing)

 then we toggle the LED

'--

' Compiler Setup (these tell Bascom

things about our micro)

$regfile = "attiny461.dat" 'bascom

needs to know the micro

$crystal = 1000000 'bascom

needs to know its speed

'--

-

' Hardware Setups (these tell bascom how

to setup our micro)

' setup direction of all ports

Config Porta = Output 'LEDs on

portA

Config Portb.5 = Input 'switches on

portB

' Hardware Aliases (these tell bascom

names we will use for I/O devices

' attached to the Micro, names are easier

to remember that ports)

RedSw Alias Pinb.5 ' hardware

alias

Led Alias PortA.7

Const debouncetime = 30
'--

' Program starts here

Do
 If Redsw = 0 Then
 Waitms debouncetime
 Do
 Loop until Redsw = 1
 Waitms debouncetime
 Toggle Led
 End If
Loop
End

We now have a debounce switch program.

98

7.8 Reading multiple switches

Often the microcontroller is required to read
multiple input switches and then control
something based upon the switch inputs.
These switches might be connected to an
assembly line to indicate the presence of an
item, to indicate if a window is open or to the
landing gear of a jet aircraft to indicate its
position.

A common method of using switches within a
program is to poll the switch (check it regularly
to see if it has been pressed).

Do
 If Sw0 = 0 Then
 Waitms debouncetime
 Do
 Loop until Sw0 = 1
 Waitms debouncetime
 Toggle Led0
 End If

 If Sw1 = 0 Then
 Waitms debouncetime
 Do
 Loop until Sw1 = 1
 Waitms debouncetime
 Toggle Led1
 End If
 ...
 ...
 If Sw4 = 0 Then
 Waitms debouncetime
 Do
 Loop until Sw4 = 1
 Waitms debouncetime
 Toggle Led4
 ...
 End If
Loop
End

99

7.9 Bascom debounce command

A simpler method of programming when there
is a sequence of checking multiple switches is
to use the Bascom DEBOUNCE command,
when a switch is pressed it is debounced by
bascom software code and the subroutine is
called (more on subroutines later)

'debounceBascom5SwV1

'compiler setup

$crystal = 1000000

$regfile = "attiny26.dat"

'microcontroller setup

Config Porta = Input

Config Portb = Output

Led1 Alias Portb.3

Led2 Alias Portb.4

Led3 Alias Portb.5

Led4 Alias Portb.6

Led5 Alias Portb.7

Sw1 Alias Pina.1

Sw2 Alias Pina.2

Sw3 Alias Pina.3

Sw4 Alias Pina.4

Sw5 Alias Pina.5

'program starts here

Do

 Debounce Sw1 , 0 , Sw1_pressed , Sub

 Debounce Sw2 , 0 , Sw2_pressed , Sub

 Debounce Sw3 , 0 , Sw3_pressed , Sub

 Debounce Sw4 , 0 , Sw4_pressed , Sub

 Debounce Sw5 , 0 , Sw5_pressed , Sub

Loop

End

'Subroutines

Sw1_pressed:

 Toggle Led1

Return

Sw2_pressed:

 Toggle Led2

Return

Sw3_pressed:

 Toggle Led3

Return

Sw4_pressed:

 Toggle Led4

Return

Sw5_pressed:

 Toggle Led5

Return

100

7.10 Different types of switches you can use

Various types of switches can be connected to microcontrollers for various purposes:
Find another type of switch and use it in your program, write it up in your notebook. Use it for the
next programs.

Key switches

So that only authorised people can operate
a device

Micro switches

Used inside moving machinery ,on doors
and cupboards

Magnetic or Reed switch

Useful for parts or doors that open and close

Tilt or Mercury Switch

Useful to sense movement or something falling over

Rotary Switch

Can be used to select one of several
different values

Tact switch

Directly soldered to a circuit board, better
quality that the cheap push button switch

101

7.11 Reflective opto switch

The RPR220 is a reflective photosensor, it has an LED and a phototransistor built into it. Have a
close look at the shape, note that one corner is cut on an angle. This is to help you identify which
connection is which.

Looking at the device from underneath (from the pins end NOT the top) this is the layout

102

To connect it into a circuit we need two resistors
A current limit resistor for the LED and a pullup resistor for the microcontroller input pin.
The current limit resistor can be calculated suing the data from the datasheet

The LED will drop 1.34V and is more powerful than a normal LED as it can handle 50mA.
So using ohms law
R=V/I = (5-1.34)/0.05 = 73 ohms minimum resistance.

For testing purposes a 150 was used, this could be changed to adjust the sensitivity of the unit,
maybe a lower value would mean the reflective surface could be further away.

It can be used in a program just like a switch

Opto_sensor alias pin B.6
…
If Opto_sensor = 0 then….

‘do something here
End if

103

8 Programming Review

8.1 Three steps to help you write good programs

1. Name each program with a meaningful name and save it into its own directory
2. Use a template to setup your program from the start
3. Add lots and lots and lots of comments as you go

You must layout programs properly and comment them well to gain achievement

8.2 Saving Programs

When saving programs you need a good quality directory / folder structure, so use a different folder for
each program:

 it keeps the files that BASCOM generates for your program in one place

 this helps you find programs quickly when you want to

 it is less confusing

 it is good practice

 Save your program at the beginning when you start it, this helps guard against teachers that like
to turn the computers off unexpectedly.

8.3 Organisation is everything

As with structuring and organising your
folders you also need to structure and
organise your program code.

Messy code is hard to understand and
it is surprising how fast you forget what
you did; and then when you want to
refer to it in the future you find that you
cannot understand what you have
written!

The use of a template or pattern to
follow will help discipline your code
writing. Break the code up into the
following sections,

 title block

 program description

 compiler directives

 hardware setups

 hardware aliases

 initialise hardware

 declare variables

 initialise variables

 initialise constants

 main program code

 subroutines.

 Interrupt routines

You will really need to be organised with what is coming up.

104

8.4 Programming template

'--
' Title Block
' Author:
' Date:
' File Name:
'--
' Program Description:

'--
' Compiler Directives (these tell Bascom things about our hardware)
$regfile = "attiny26.dat" 'the micro we are using
$crystal = 1000000 'the speed of the micro

'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb =Input 'switches on portB

' Hardware Aliases
Led0 alias portb.0
' Initialise ports so hardware starts correctly
Porta = &B11111111 'turns off LEDs

'--
' Declare Variables

' Initialise Variables

' Declare Constants

'--
' Program starts here
Do

Loop
End 'end program

'--
' Subroutines

105

8.5 What you do when learning to program

1. Develop an understanding of what a computer is and build a correct mental model for one
a. Input and output conversion at the voltage level
b. Conversion of input and output voltages into data
c. Processing and manipulating data which is stored in variables

2. Get to know about the hardware you are using
a. Get a copy of the datasheet
b. Learn about the power supply required
c. Learn how to configure pins as either input or output
d. Learn how to interface common I/O circuits: LED’s, Switches, Piezo, LDR…
e. Find out about the different types of memory and amount of each
f. Find out about the speed of processing

3. Get to know the language and the IDE you are using
a. Learn to access the helpfile (e.g. highlight a word and press F1)
b. The language has syntax (specific grammar/word rules) you must use correctly
c. The IDE (Integrated Development Environment) has special commands and built in

functions you must know and use: F7, F4, $crystal, $regfile, config, alias, const, port, pin
d. Learn common I/O functions: set, reset, locate, LCD, GetADC
e. Understand the limitations of and use variables: byte, word, long, single, double
f. Use constants instead of numbers in the code (e.g. waitms timedelay)
g. Get to know the control functions: Do-Loop (Until), For-Next, While-Wend, If-Then (Else)
h. Get to know about text and math functions (read help file, write a few simple programs

using the simulator)
4. Develop Algorithms (written plans for the process the program must carry out)

a. Have a goal in mind for the program – use specifications and write a simple brief
b. Plan your I/O by drawing a system block diagram
c. Determine variables and constants required in the program
d. Determine the state of all the I/O when the program begins
e. Write the algorithm – Identify, order and describe the major processes the micro must do.

5. Draw Flowcharts or Statecharts (visual diagram for the process the program must carry out)
a. Identify the blocks/states that will be used
b. Use arrows to link the blocks and visualise control processes and program flow

6. Develop code from the flowcharts
a. The outer looping line is replaced with a do-loop
b. Backwards loops are replaced with do-loop do-loop-until, for-next, while-wend
c. Forward loops are generally replaced with If-Then-EndIf
d. Replace the blocks with actual commands
e. Layout the code with correct indentations(tabs) to improve readability
f. Learn to comment code so that it explains what is happening (not just describes)
g. Use subroutines to organise complex code so that logic code is separate from I/O code
h. Trial different ways of solving the problem and keep records of you experiments

This is not a step by step process; as when you get to know about one area you get to know about
others at the same time. The key to gaining depth in your knowledge and understanding comes from
LOTS OF EXPERIMENTATION! That means making mistakes and above all having fun, you need to
know that good decisions come from experience and experience comes from bad decisions!!! So
experimenting is ok.

In your electronics courses at school the aim is not to make you an expert in all the above (expertise
comes after about 10 years working in an area), the aim is to introduce you to microcontroller
electronics and programming, and to understand some of what is happening in the world around you
and to feel able to see that you can control it and not have it control you.

106

8.6 AVR microcontroller hardware

A microcontroller is a general purpose electronic circuit; it is a full computer inside a single integrated
circuit (IC or chip). Often ICs have fixed functions e.g. the TDA2822M amplifier or LM358 opamp, they
only do one job and their input and output pins have fixed roles, so you have limited control over what
they do, and therefore limited control over how to connect them.
With a microcontroller however you are in control, you decide:

 what the function of the IC is

 what most of the pins are used for (inputs or outputs)

 and what external input/output devices these pins are connected to.

If you want an egg timer, a car alarm, an infrared remote control or whatever, it can all be done with a
microcontroller.

A commercial range of microcontrollers called ‘AVR’ is available from ATMEL (www.atmel.com). You
could start with the ATTiny461, it has 4kbytes of Flash for program storage, 128 bytes of Ram and 128
bytes of EEPROM for long term data storage. Or you could start with the ATMega48, it has 4kbytes of
Flash, 512 bytes of RAM and 256 bytes of EEPROM.

ATTiny461

ATMega48

 Important pins:

 VCC & GND are dedicated for power, VCC is positive voltage and GND is negative

 AVCC and AREF are special pins for measuring analog voltages (connect to VCC).

 I/O ports are a group of 8 I/O pins which can be controlled together

 MOSI, MISO, SCK and RESET are pins used to upload the programs.
(You cannot use RESET as an I/O pin, but MOSI, MISO, SCK can be used with care)

8.7 Power supplies

Most microcontrollers work off low voltages from 4.5V to 5.5V, so yours can be run off batteries or a dc
power pack, voltages in excess of these will destroy the micro. Check the datasheet to see what the
range is for your micro, the ATTINY26-16PI will work from 4.5 to 5.5V, the ATMEGA48-10PU will work
from 2.7V to 5.5V.

107

8.8 BASCOM and AVR assignment

Learning goal:

Students should become independent learners able to find support to help their own learning

The AVR is a microcontroller from which manufacturer________________

The URL for their website is: ________________________

Download the specific datasheet for our microcontroller (the summary version not the full version) and
print the first 2 pages and put them in your journal.

The Programmable Memory size is ______ The SRAM size is _______The EEPROM size is _______

The number of I/O lines is __________ and they are arranged in _______ports

BASCOM-AVR is a compiler from _____________________

The URL for their website is: ________________________

Download the latest version of the BASCOM AVR demo and install it on your PC.

There are a number of application notes on the website for the AVR
Describe what AN128 is about

__

__

__

There are a number of other great resource websites for the AVR and BASCOM
Find 3 websites on the internet that have useful resource information on BASCOM
List the websites URL and what you found there

__

__

__

__

__

__

__

108

The ATTiny26 datasheet is full of useful information here is what some of it means

109

8.9 Programming words you need to be able to use correctly

Find definitions for them

computer

microcontroller

hardware

software

memory

RAM

variable

data

byte

word

program

algorithm

flowchart

BASIC

port

code

upload

compile

command

repetition

do-loop

for-next

subroutine

gosub

return

110

8.10 Year10/11 typical test questions so far

What have you learned about connecting power to a microcontroller?
What is a typical power supply voltage?
What range of voltages is acceptable?
Which pin(s) are positive and which are negative?
What are the names for these pins?
What batteries would you use?
What have you learned about programming a microcontroller?
What is the software we are using called? Where does it come from?
What does IDE stand for?
What are the names for the 4 different parts of the IDE software?
How many wires are there in the programming cable?
What happens if $regfile is wrong?
What happens if $crystal is wrong?
What does compiling mean?
What have you learned about interfacing LEDs to a microcontroller?
Draw the connection for an LED and resistor to a microcontroller. Draw this on a bread board
diagram as well. Are these series or parallel?
What is a typical value of resistor?
What would be a minimum value?
What would be a maximum value?
What does the toggle command do?
What have you learned about programming the pins of a microcontroller?
How many I/O pins does an ATTiny461 have?
With an LED on A.5 and a switch on A.7 write the config statements for both
What are the different commands for driving a single output pin?
What command can you use to drive multiple output pins all at once?
What have you learned about program style?
We ‘tab’ or indent code for what reason?
Why do we comment programs? Write comments for a simple flashing LED program.
What is const used for? Write a few lines of program that uses const.
What is alias used for? Write a few lines of program that uses alias.
What have you learned about making sound?
How is a piezo connected?
What is the command used to make sound?
Write a line of code to show how it the command used?
What have you learned about interfacing switches?
What is the resistor in the circuit called?
Why is it necessary?
What value is typically used?
Draw the circuit for a switch connected to a microcontroller?
Explain the code used to test a switch to see if it pressed?
What is the problem with switch contact bounce for software?
.

111

9 Introduction to program flow

9.1 Pedestrian crossing lights controller

Client, customer or end-user: …

Description of the problem, issue, need or opportunity (diagrams may be required):
Vehicles travel at high speeds on this road and although there is a pedestrian crossing,

pedestrians are at considerable risk

Conceptual Statement:
Design and construct a set of traffic lights for a pedestrian crossing

Functional attributes:

When the button is pressed the lights change from green to orange,
there is a delay of 25 seconds
Then the lights go red
There is a delay for 1 minute
Then the lights go back to green,

Cross and DontCross lights work as expected.

System Block Diagram: (include all input and output devices)

112

9.2 Pedestrian Crossing Lights schematic

113

9.3 Pedestrian Crossing Lights PCB Layout

114

9.4 Algorithm planning example – pedestrian crossing lights

(define the operation of the system)
Name: _______________ Project: _______________ Date: _____

Define all the input and output devices

Inputs Outputs

Device
Description

Name Device
Description

Name Starting State

Large buttons on
each pole for
pedestrians to
press to cross

CROSSBUTTON
RED traffic lights
for cars on pole

REDLIGHT OFF

Orange traffic
lights for cars

ORANGELIGHT OFF

Green traffic
lights for cars

GREENLIGHT ON

Buzzer to
indicate to
pedestrians to
cross now

BUZZER OFF

CROSS NOW
light on each
pole

CROSSNOW OFF

DON’T CROSS
light on each
pole

DONTCROSS On

The algorithm

Initially the
Redlight , orangelight, buzzer and cross are off,
Greenlight, dontcross are on

For each input describe what happens to any output devices
Use “if __________ then _________” or “ do___________ until ___________” statements

If the pedestrian presses the crossbutton then
 The greenlight goes off, the orange light goes on

Then after 25 seconds
 the orangelight goes off
 the redlight goes on
 the don’t cross goes off
 the cross now goes on
Then after 1 minute
 the red light goes off
 the cross now goes off
 the don’t cross comes on
 the green light comes on

115

9.5 Flowchart planning example – pedestrian crossing lights

Programs flow in sequence and
can be represented well with
flowcharts

Note how the planning for this
program includes a graphic
detailing the colour of the lights,
this helps visualise the program
and is an excellent example of
choosing a planning tool that
will help your thinking.

116

9.6 Getting started code
' PedestrianCrossingsVer1.bas

' B.Collis 1 Aug 2008

' reads a switch to check if pedestrian wants to cross

$crystal = 1000000

$regfile = "attiny461.dat"

Config Porta = Output

Config Portb = Output

Config Portb.6 = Input

'here we use aliases to make the code easy to write and easy to read

'lights for cars

Greenlight Alias Porta.7

Orangelight Alias Porta.6

Redlight Alias Porta.5

'lights for pedestrians

Dontcrosslight Alias Porta.4

Crossnowlight Alias Porta.3

Crossbutton Alias Pinb.6

'we need different delays for different purposes

Const Orangedelay = 10

Const Crossdelay = 20

Const Dontcrossdelay = 5

'initial state of lights for cars

Greenlight = 1 'on

Orangelight = 0 'off

Redlight = 0 'off

'initial state of lights for pedestrians

Dontcrosslight = 1 'on

Crossnowlight = 0 'off

Do

 'wait for pedestrian to press button

 Do

 Loop Until Crossbutton = 0

 Greenlight = 0

 Orangelight = 1

 Wait Orangedelay

 'you finish the rest of this code

Loop

End

9.7 Modification exercise for the pedestrian crossing

1. Generally the dontcross light is off until the pedestrian presses the button
2. After the redlight comes on there be a short delay before the crossnow
3. Put a 5 second delay into the system after the pedestrian pushes the button and before the

light goes red.
4. Implement a short beep into the system when the cross now light comes on

Achieved Merit Excellence

Implements 1 above into the
algorithm AND the program
AND adds useful describing
comments in the program

Also impliments 2 above in
both the algorithm AND the
program AND uses comments
to explain the program

Implements 3 above in both
the algorithm AND program
AND with good explanatory
comments in the program.

Can you see that achievement criteria are actually algorithms?
SO MAKE SURE YOU UNDERSTAND THEM!

117

9.8 Traffic lights program flow

Learning to develop useful planning tools to help
solve problems such as drawings, block
diagrams, tables & flowcharts.
Learning about the Bascom commands ALIAS
1. Understand the situation by drawing a planning
diagram that explains the road layout

2. The traffic light sequence process is actually very confusing and a planning tool such as a
sequence diagram will help you plan the program. Complete this sequence which shows which
lights come on in the sequence

How long should the delays between LED changes be for real traffic lights?
In our model we only need to test that the sequence is correct so we will choose shorted delays

118

Real lights Our Model for testing purposes will be

Green is on for 1 minute Grn_delay = 8

Orange 30 seconds? Or_delay = 3

Delay after one road goes
red before the green for
the next road goes on

Red_delay = 1

3. Draw a system block diagram – which shows important connections within the system, but is
not a full circuit diagram (complete the schematic below with the pin connections for Set B and Set
C.
Label the rst of this diagram with the pins on the micro you will use for the other 2 sets of lights.
Take special note that you will have to use at least one of the output pins on portb. I chose
portB.4.

119

4. Do the physical wiring of the 3 sets of LEDs to the microcontroller.

 Layout the physical LEDs to follow the real physical layout

 Use appropriate coloured LEDs

 Keep it tidy, use short wires.

Here are some photos of the process

Wiring stage one: all the LEDs and resistors are mounted

120

Wiring stage two: the ‘A’ set of lights are wired up
A.0 goes to A_red
A.1 goes to A_or
A.2 goes toA_grn

121

Wiring stage 3: B set of LEDs are wired to three ports of the microcontroller, here I have chosen
portA.3, portA.4,portA.5.

Note thatportsA.3, A.4 and A.5 are
used
Also note that the G(ground) and
V(positive voltage) pins are not
connec ted to I/O devices but to the
power supply!

Can you complete the last stage of the
LED wiring? You will have to put one
of the LEDs on portB. I chose portB.4

If you need more help search the rest
of the book for the last picture.

122

5. Complete this flowchart in
your workbook with the rest of
the sequence. There are 9 LEDs
so there will need to be 9 stages
inside the loop.

CAN you see thepattern
emerging

Having the flowchart will help
you debug (correct errors in your
program) later on

6. Write your 'TrafficLightsVer1.bas

'B.Collis

start

all reds on
all others off

A_red off
B_grn on
grn_delay

B_grn off
B_or on
or_delay

A_red off
A_grn on
grn_delay

A_grn off
A_or on
or_delay

A_or off
A_red on
red_delay

123

program, things to
work on in your
program:

 Describe the
hardware at the
top of the file
and use aliases
for the port pins
that describe
what is
connected to
each one

 Use spaces to
help layout your
program so it
looks good

 Comment your
program with
short clear
descriptions

 Use constants
with good
names e.g.
waitms
red_delay

'*************************

$crystal = 1000000

$regfile = "attiny26.dat"

Config Porta = Output

Config Portb = Output

'*************************

'LED connections

'use aliases so that the program is easier to write and

understand

A_red Alias Porta.0

A_or Alias Porta.1

A_grn Alias Porta.2

B_red Alias Porta.3

B_or Alias Porta.4

B_grn Alias Porta.5

C_red Alias Porta.6

C_or Alias Porta.7

C_grn Alias Portb.4

'use constants to make the program easier to read and to

modify

Const Grn_delay = 8 'green on time

Const Or_delay = 3 'orange on time

Const Red_delay = 1 'safety delay

'initially set the red lights on and all others off

'introducing the new commands SET and RESET to

individually control port pins

A_red = 1 'on

B_red = 1 'on

C_red = 1 'on

A_or = 0 'off

A_grn = 0 'off

B_or = 0 'off

B_grn = 0 'off

C_or = 0 'off

C_grn = 0 'off

Do

 'A lights

 A_red = 0 'off

 A_grn = 1 'on

 Wait Grn_delay

 A_grn = 0 'off

 A_or = 1 'on

 Wait Or_delay

 A_or = 0

 A_red = 1

 Wait Red_delay 'delay for red light runners!

 'B lights

 B_red = 0

124

 B_grn = 1 'grn on

 Wait Grn_delay

 B_grn = 0 'grn off

 B_or = 1

 Wait Or_delay

 B_or = 0

 B_red = 1

 Wait Red_delay 'delay for red light

runners!

 'C lights you write the rest of the code

Loop

End

125

10 Introductory programming - using subroutines
Once a program gets large we need to learn how to manage it properly.
Subroutines have been seen already when we have used the debounce command but here is a
list of what they can do for you:

Refine you code by Reducing, Reusing & Recycling

 Reduce the complexity of your programs,
by hiding detail

 Reuse - reuse the program code multiple
times within the same program

 Recycle – you can use the same program
code easily in other programs

Here is an example of calling some subroutines

Do
 Gosub test_sensor
 If sensor_output = 0 then
 gosub got_it
 Else
 gosub tell_the_user_again
 End if
Loop
End

And another example
DO
 Gosub test_sensor
 If sensor_output =10 then gosub do_a
 If sensor_output =11 then gosub do_b
 If sensor_output =12 then gosub do_c
 If sensor_output =13 then gosub do_d
 If sensor_output =14 then gosub do_e
 …
Loop
End

You can see that they really can de-complicate code (make it easy to read and understand) by
removing a lot of I/O code

Subroutines are used to make code easier to read, understand and maintain, however they can
be used well or used poorly. The clue to using subroutines well is to keep the logic for the
program in the main loop and the input and output detail in the subroutines. As above and in the
next example.

126

10.1 Sending Morse code

Morse code is a form of communication used in the early days of telegraph and radio
communication when voice could not be sent just short messages using codes. It was also used
between ships using lights.
Draw a flowchart and write a program to send your name using Morse code.

A ● ▬ H ●●●● O ▬ ▬ ▬ U ●● ▬ 1 ● ▬ ▬ ▬ ▬ 6 ▬ ●●●●

B ▬ ● ● ● I ●● P ● ▬ ▬ ● V ●●● ▬ 2 ●● ▬ ▬ ▬ 7 ▬ ▬ ●●●

C ▬ ● ▬ ● J ●▬ ▬ ▬ Q ▬ ▬ ● ▬ W ● ▬ ▬ 3 ●●● ▬ ▬ 8 ▬ ▬ ▬ ●●

D ▬ ● ● K ▬ ● ▬ R ● ▬ ● X ▬ ●● ▬ 4 ●●●● ▬ 9 ▬ ▬ ▬ ▬ ●

E ● L ● ▬ ● ● S ●●● Y ▬ ● ▬ ▬ 5 ●●●●● 0 ▬ ▬ ▬ ▬ ▬

F ●● ▬ ● M ▬ ▬ T ▬ Z ▬ ▬ ●●

G ▬ ▬ ● N ▬ ●

To make sense timing is important so we will follow these rules

 A dash is equal to three dots

 The space between the parts of the same letter is equal to one dot

 The space between letters is equal to three dots

 The space between two words is equal to seven dots

If you wanted to send a short sentence like “ whats up.” It is crucial that you get the gaps between letters , parts of letters and parts of words correct
or the message willl not be understandable by the person receiving it.

Using the program Excel as a planning tool we can draw up a chart that shows the correct timing for the sequence for ‘whats up’.

Check that:

 the width of 1 dot it is 1 cell in excel

 the width of 1 dash is 3 cells,

 the gap between parts of a letter is 1 cell,

 the gap between letters is 3 cells

 the gap between words is 7 cells.
A program like this though could be very very long so we will break it up into sections called subroutines by putting the I/O code into subroutines

127

The use of subroutines as well as comments, aliases and constants will make your code easier to
understand and maintain .
Uncommentedandpoorlysetoutcodeislikereadingasentencewithoutpunctuationorspacestheme
aningisstilltherebutitisalittlehardtofollowandunderstand.

NOTE: the different
shape of a gosub

'--

' Title Block

' Author: B. Collis

' Date: May 2008

' File Name: MorseMeV2.bas

'--

' Program Description:

' send morse code using an LED

' show off good use of subroutines and repitition

'--

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "attiny26.dat ' bascom needs to know our micro

$crystal = 1000000 ' bascom needs to know how fast it is going

'--

' Hardware Setups

Config Porta = Output ' make these micro pins outputs

' Hardware Aliases

Morseled Alias Porta.7 ' the name morseled is easy to remember

'--

' Declare Variables

Dim Count As Byte 'temporary variable to count repetitions

' Initialise Variables

' Declare Constants

Const Dotdelay = 250 ' length of a dot

Const Dashdelay = 750 ' length of a dash

Const Endofworddelay = 1750 ' gap between words

'--

' Program starts here

Do 'start of a loop

 Gosub Send_c

 Gosub Send_l

 Gosub Send_s

 Waitms Dashdelay

 'send more letters here

 Wait 5

Loop 'return to do and start again

End

'--

' Subroutines

Send_c:

 'letter c - the sequence is dash dot dash dot

 For Count = 1 To 2 'send these twice

 Gosub Dash

 Gosub Dot

 Next

 Waitms Dashdelay 'longer delay between letters

Return

Send_l:

 'letter l - the sequence is dot dash dot dot

 Gosub Dot 'a dot

 Gosub Dash 'a dash

 For Count = 1 To 2 'send 2 dots

 Gosub Dot

 Next

 Waitms Dashdelay 'longer delay between letters

Return

128

Send_s:

 'letter s - the sequence is 3 dots

 For Count = 1 To 3 'send it 3 times

 Gosub Dot

 Next

 Waitms Dashdelay 'longer delay between letters

Return

'---

Dot:

 Morseled = 1 ' on

 Waitms Dotdelay ' wait 1 dot time

 Morseled = 0 'off

 Waitms Dotdelay 'short delay between dots & dashes

Return

Dash:

 Morseled = 1 ' on

 Waitms Dashdelay ' wait 1 dash time

 Morseled = 0 'off

 Waitms Dotdelay 'short delay between dots & dashes

Return

Not only do things like subroutines, comments,
indenting code, the use of alias and const make your
code easier for you to read and debug, imagine going
to a job interview and being asked to bring in some
code you had written to show your prospective boss –
which would you show him?

Using const, alias, subroutines and comments
properly in programs is an essential code of
practice and worth credits to

129

10.2 LM386 audio amplifier PCB

Stage 1 of the LM386 audio amplifier schematic

This is more or less from the datasheet, the 10uF capacitor C3 has been added to increase the gain,
however a couple of practical changes need to be made ot the schematic before it can be used.
First it needs a filter capacitor on the DC supply, otherwise the speaker output will be extremely noisy.

130

Next the audio input has only a signal conection niot a ground connection and cables that come from
the device you want to amplify generally have a signal plus ground wire, so that has been added in
the next diagram.

The labels in blue have been added to the schematic are to help you choose which components to
use from the CLS library inEagle.It is important to choose the right size components otherwise they
may not fit on the PCB when you make it.

131

10.3 LM386 PCB Layout

The layout progresses through several stages
1.move all the components onto the working area of the layout

4. try to layout the components with the minimum number of crossing airwires..

3.turn off the layers you don’t need so that you can focus clarly on the layout

4.layout the tracks

132

5.Add your name and the board name

6. Add labels for the wires you will have to connect to the board

7. Add some mounting holes fr the board, so that it can be attached inside a case.

8. Add some stress relief holes for wires that come on and off the board

133

11 Introductory programming – using variables

Inside our brain is our memory, it is where we store and work on information, it is the same in a
computer. We often use the different terms information, RAM, data, address or variable without
really understanding their separate meanings; it is useful to clarfify a meaning for each one.

 RAM is the physical place (like our brain cells/synapses). In a computer it is arranged in
‘bytes’ -groups of 8 individual bits (8 bits = 1 byte)

We can think of it like a series of numbered storage containers or pigeon holes

 Data is what is stored in the RAM,
o data is numbers e.g. 5 or &B00000101 in binary.

 Address: this is the physical location of a byte of RAM in the microcontroller (e.g. 0 to 1023).
o Addresses are sequential.

 Variable is the name we give to the place in RAM , it is a useful way to keep track of what we
stored there. E.g. height is a variable, it contains the number 6, width is a variable it contains
the number 3. These numbers may change a lot while a programis running.

 Information: data such as ‘13’ has little meaning to us, it has more meaning if we store it in a
variable called weight but it has information when we know that it is the weight of a particular
pen in grams.

RAM Address

Variable
 (name for address)

Data
 (actual number in the RAM)

1 Orangedelay 10

2 Crossdelay 20

3 Num_flashes 0

4 Flashedelay 500

Programs use, alter and even create data while they are running. This data varies as the program
executes so we name it variables.

A variable is the unique name we give to a location in the microcontroller’s RAM
to store data. When data is stored in ram we say we are storing it in a variable.

134

11.1 Stepping or counting using variables

Have you noticed that at a pedestrian crossing that after the Crossnow light goes off the Dontcross
light actually flashes before staying on.

In this program we want the dontcross light to flash 10 times while the pedestrian is
crossing.

Dim Num_flashes As Byte
Dim Orangedelay As Byte

Dim Crossdelay As Byte

Dim Flashdelay As Byte

Orangedelay = 10

Crossdelay = 20

Flashdelay = 500

 ‘Here is the wrong way to do it
Do

 Do 'wait for ped cross button

 Loop Until Crossbutton = 0

 Reset Greenlight 'stop the traffic

 Set Orangelight

 Wait Orangedelay

 Reset Orangelight

 Set Redlight

 Reset Dontcrosslight 'allow pedestrian to cross

 Set Crossnowlight

 Wait Crossdelay

 Reset Crossnowlight

 'flash the don't cross light 10 times to tell pedestrians to stop crossing

 Set Dontcrosslight 'flash1

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

 Set Dontcrosslight 'flash2

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

 Set Dontcrosslight 'flash3

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

 Set Dontcrosslight 'flash4

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

'...

 Reset Redlight 'let traffic continue

 Set Greenlight

Loop

End

The above code wastes a lot of our program memory.

135

‘Here is the right way to do it

Set Greenlight 'on

Reset Orangelight 'off

Reset Redlight 'off

Set Dontcrosslight 'on

Reset Crossnowlight 'off

Do

 Do 'wait for ped cross button

 Loop Until Crossbutton = 0

 Reset Greenlight 'stop the traffic

 Set Orangelight

 Wait Orangedelay

 Reset Orangelight

 Set Redlight

 Reset Dontcrosslight 'allow pedestrian to cross

 Set Crossnowlight

 Wait Crossdelay

 Reset Crossnowlight

 'flash the don't cross light 10 times -

 For Num_flashes = 1 To 10

 Set Dontcrosslight

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

 Next

 Reset Redlight 'let traffic continue

 Set Greenlight

Loop

This is the for-next loop in programming – every programming language has it (in some form or

another) and we use it when we want something to repeat or step a fixed number of times. The
variable num_flashes starts at 1 and each time through the loop it increases by 1 until it has
completed the loop 10 times.

136

11.2 For-Next

Repetition is what computers do best here is another example of repetition using a for-next.
Example: when you join a gym they give you a workout card which has the exercises and the number
of repetitions on it to do.

They don’t give you a list:

Bench Max
Bench Max
Bench Max
Bench Max
Bench Max
Bench Max
Inline Max
Inline Max
Inline Max
Inline Max
Inline Max
Inline Max
...
...
...

The same with computer programming, when you see something that looks like it is repeating you
replace it with a loop of some form (there are several choices).

E.g. at a very busy gym everyone has to be split into one of two groups, those that exercise on the
machines and those that work on the mats. Every 60 seconds everyone changes from the mat to the
machines. There are two big lights, one red and one green. When the red light is flashing the red
group is on the machines, when the green light is flashing the green group is on the machines.

Each light flashes 20 times per minute(on for ½ second off for 2½ seconds). We could write a
program the goes:
Red on
Wait ½ sec
Red off
Wait 2½ sec
Red on
Wait ½ sec
Red off
Wait 2½ sec
Red on
Wait ½ sec
Red off
Wait 2½ sec
Red on
Wait ½ sec
Red off
Wait 2½ sec
...
but this is not really computer programming

We need a simple way of controlling how many times the lights flash and we can use a variable to
count the flashes and a loop that repeats depending upon what number is stored in the variable.

137

'---

' Compiler Setup

$regfile = "attiny461.dat"

$crystal = 1000000 'bascom needs to know its speed

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Input 'switches on portB

' Hardware Aliases

Green Alias Porta.1

Red Alias Porta.0

'---

'Declare Constants

Const Lightontime = 500

Const Lightofftime = 2500

'--

'Declare Variables

 Dim Count As Byte

'---

Program starts here

Do

 For Count = 1 to 20

 Set Red

 Waitms Lightontime

 Reset Red

 Waitms Lightofftime

 Incr Count

 Next

 For Count = 1 to 20

 Set Green

 Waitms Lightontime

 Reset Green

 Waitms Lightofftime

 Incr Count

 Next

Loop

End

138

11.3 Siren sound - programming using variables

In this program we will use a variable to control the duration (length) of a tone.

First lets review what a tone is. It is a
repeated turning on and off of our piezo.
The frequency of the tone is 1/period.
The duration of the tone is the number of
complete cycles.

A piezo will not make a sound when you turn it on; it only makes a sound when
you turn it on and off rapidly. So to make a tone we must turn the piezo on then
wait a bit, then turn it off and we repeat this for the duration of the tone. In this
program the tone period will be 1mS so the piezo must be on for 500uS (1/2 mS)
and off for the same. Bascom has a waitus command (it is not particularly
accurate but its good enough for this exercise). We want the tone to last long
enough to hear it so we need to repeat it 150 times. 150 times 1mS will give us a
tone duration of 150mS (0.15S).

To count the number of cycles we will dimension a variable called cyclecount,
and we will increase it inside a do-loop. It will count upto the max number of
cycles and then we will have a 2 second break. Then it will repeat.

Remember to reset cycle count to 0 or it will overflow.

This program works similalrly to the Bascom SOUND command.

139

'--

' Title Block

' Author: B.Collis

' Date: 22 Feb 08

' File Name: SirenV1.bas

'--

' Program Description:

' This program makes a simple tone using a piezo

' Program Features:

' makes use of Bascom waitus (microseconds) command

' introduces first use of a variable

' the variable cyclecount increases from 0 until it reaches the preset

(constant)

' value maxcyclecount at which point there is a quiet time

' the led is on when the the tone is occuring

' Hardware Features

' a pezo can be directly connected to the micro port

' the led has a 1k resistor in series to limit the current

'--

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "attiny26.dat" 'the micro we are using

$crystal = 1000000 'rate of executing code

'--

' Hardware Setups

Config Portb = Output

' Hardware Aliases

Piezo Alias Portb.3 'use useful name PIEZO not PORTb.3

Blueled Alias Portb.4 'use useful name BLUELED not PORTB.4

'--

'Declare Constants

Const Halfperioddelay = 500 ' delay for 1/2 period

Const Maxcyclecount = 150 'number of cycles to do

'--

' Declare Variables

Dim Cyclecount As Byte

'--

' Program starts here

Do

 Set Blueled 'turn led on

 For Cyclecount = 0 to Maxcyclecount1

 Waitus Halfperioddelay1

 Set Piezo

 Waitus Halfperioddelay1

 Reset Piezo

 Next

 Reset Blueled 'turn led off

 Waitms 2000 'quiet time

Loop

End 'end program

140

11.4 Make a simple siren

A simple siren sound can be made using two repeating tones
A tone of 1 frequency and 1 duration followed by a tone of a
different frequency and a different duration. We will use our
knowledge of variables to make our own tones.

'-

--

--

--

--

--

--

--

--

--

--

--

--

--

' Title Block

' Author: B.Collis

' Date: 22 Feb 08

' File Name: SirenV2.bas

'--

' Program Description:

' This program makes a simple siren on a piezo

'

' Program Features:

' makes use of bascom waitus (microseconds) command

' Hardware Features:

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 1000000 'the crystal we are using

$regfile = "attiny26.dat" 'the micro we are using

'--

' Hardware Setups

' setup direction of all ports

Config Portb = Output

' Hardware Aliases

Piezo Alias Portb.3 'use useful name PIEZO not PORTb.3

Blueled Alias Portb.4 'use useful name BLUELED not PORTB.4

'--

'Declare Constants

Const Halfperioddelay1 = 500 ' first tone 1/2 period

Const Halfperioddelay2 = 800 ' second tone 1/2 period

Const Maxcyclecount1 = 350 ' longer than 255!!!

Const Maxcyclecount2 = 150

'--

' Declare Variables

Dim Cyclecount As Word 'keep count of number of cycls(periods)

Dim Sirens As Byte

'--

141

' Program starts here

Do

 Set Blueled

 For Sirens = 1 To 3 'just make 3 for testing purposes

 For Cyclecount = 0 to Maxcyclecount1

 Waitus Halfperioddelay1

 Set Piezo

 Waitus Halfperioddelay1

 Reset Piezo

 Next

 For Cyclecount = 0 to Maxcyclecount2

 Waitus Halfperioddelay2

 Set Piezo

 Waitus Halfperioddelay2

 Reset Piezo

 Next

 Next

 Reset Blueled

 Wait 10 'have a bit of quiet!!!

Loop

End 'end program

'--

Point to take note of:

 A single sirensound has been put into a subroutine, this subroutine will last approx 350mS +
240mS = 590mS. Subroutines are a great way of decomplicating your programs.

 How code is indented/tabbed over to aid readabilaity

 If you are using a do-loop – remember to reset your counter

 Use constants rather than putting numbers into your code (waitus halpperioddelay2). It makes
it so much easier to read

 Use decent names for variables, constants aand aliases; ‘waitus a’ isn’t much use when trying
to debug a program

 Use pictures/diagrams to help you plan things

11.5 Siren exercise

Modify the delays and count values in this to find a siren you like the most.

142

11.6 A note about layout of program code

We could create a program that flashes an LED 3 times waits a bit then flashes it again.

Indenting (tabbing code, is an extremely important aspect of writing
programs, it adds to their readability and your ease of debugging.

I often fix students code simply by setting up the indenting and find things like this

HARD TO SPOT THE ERROR EASY TO SPOT THE ERROR

Do
For Num_flashes = 1 To 10

Set Dontcrosslight

Waitms Flashdelay

Reset Dontcrosslight

Waitms Flashdelay

Loop
Next

Do
 For Num_flashes = 1 To 10

 Set Dontcrosslight

 Waitms Flashdelay

 Reset Dontcrosslight

 Waitms Flashdelay

Loop
Next

When a block of code is inside a control structure of some kind the inside code is indented and the
end of control structure lines up with the beginning of it. In this case it can now be seen that the For
has no closing Next as the Next is outside the Do-Loop. OOPS – need to move the Next above the
Loop and then indent it so that it lines up with the For

143

11.7 Using variables for data

We have seen ho w a variable can be used to create a stepping pattern in program code now we see
how numbers can store information. In a calculator with several memory locations each is given a
name such as A,B,C,D,E,F,X,Y.M. etc. The name of the memory location has nothing to do with what
you are using it for and it is up to you to remember what was stored in each location. In a
microcontroller each memory location is given a name by the programmer. This means it is much
easier for you to remember what is in the memory location and easier to use within your program.

Here are some examples of using variables

Dim Width as Byte DIM is short for dimension and means set aside a part of RAM for our program
to use. From now on in the program it will be called Width. It is easier for us to have names for
memory locations such as ‘width’ than using the physical address of the RAM, address 1.

Dim Height as Byte
Dim V_Position as Byte
Dim Speed as Byte
Dim X_position as Byte
Dim Color as Byte
Dim Mass as Byte

Here are some common things you will see in programs
Height = 10 (put 10 into the memory location we dimensioned called height)

Incr X_position (increase the value in X_position by 1)

Color = Width / Height (divide the number in Width with Height and put the answer into Color - the
values of Width and Height do not change)

Speed = Speed + 12 (get the number from memory location called Speed and increase it by 12 and
put it back into the same memory location)

A variable of type Byte can store numbers from 0 to 255 (&B11111111) so it has limited use so often
we group bytes together to store bigger numbers.

144

11.8 Different types of variables

Bigger numbers require more RAM than smaller numbers, also different kinds of numbers require
different amounts of RAM (e.g. negative, decimals). Microcontrollers have limited RAM, so to make
the best use of RAM we use the best variable type we can. If we dimension a variable as a type that
can store huge numbers and only every use numbers up to 10 then we are wasting a precious
resource.
Using the Bascom-AVR help file research the following information on the different types of variable
you can use.

Variable
type

Minimum Value
(before underflow)

Maximum Value
(before overflow)

Number of bytes used to
store it

Bit 0 1 1byte for 1 bit however if you
dimension 8 bits they will all be
stored in the same byte

Byte

0 255 1

Word

Integer

Long

Single

Double

Every microcontroller has different amount of RAM available for storing variables
Carry out research on these different AVR microcontrollers

 RAM size (bytes) FLASH - program
size(bytes)

EEPROM size (bytes)

ATTiny13

ATTIny45

ATTIny461

ATMega48

ATMega16

ATMega32

ATMega644

ATMega1284

There is no point in memorizing this data; its just a matter of knowing about so that you can find it
when you need it.

145

11.9 Variables and their uses

' ShowComandsV1.bas
$sim
$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output
Config Pinb.6 = Input

.

'dimension variables
Dim Byte1 As Byte
Dim Byte2 As Byte
Dim Word1 As Word
Dim Int1 As Integer
Dim Single1 As Single
Dim Single2 As Single

Allocating some parts of the RAM, and giving those parts
names so that we can refer to it more easily
(dimensioning).

Byte1 = 12
Byte1 = Byte1 + 3
Incr Byte1
Byte2 = byte1

What is the value of the variable byte1 after this?

Byte2 = Byte1 / 10

Division - a byte can only represent whole numbers from 0
to 255 so division truncates (IT DOES NOT ROUND)
16/10 = 1 (whole numbers only!)

Byte2 = Byte1 Mod 10 MOD gives you the remainder of a division (16 mod 10 = 6)

Byte2 = Byte1 * 150

This gives the wrong answer because a byte can only hold
a number as big as 255

Word1 = Byte1 * 150

This gives the right answer!

Int1 = 200
Int1 = Int1 – 100
Int1 = Int1 – 100
Int1 = Int1 – 100
Int1 = Int1 – 100

need negative numbers then use integer or long

For Single1 = 0 To 90 Step 5
 Single2 = SQR(single1)
Next

need DECIMALS use single or double

End

Make sure you put an END to your program or it will
continue on and potentially cause crashes (if you micro
was controlling a car then it might be a car crash- ouch!!)

146

11.10 Vehicle counter

This program counts different vehicle types everytime a different
switch is pressed, if we run it inthe simulator we can see the
numbers in decimal, binary and hexadecimal

'VehicleCounterV2.bas

'test our ability to count vehicles,

'as used by someone standing at an intersection monitoring traffic

flows

$crystal = 1000000

$regfile = "attiny461.dat"

Config Porta = Output

Config Portb = Input

Cars_sw Alias Pinb.0 'RED switch

Trucks_sw Alias Pinb.1 'YELLOW switch

Bikes_sw Alias Pinb.2 'GREEN Sswitch

Peds_sw Alias Pinb.3 'BLUE switch

Clear_sw Alias Pinb.4 'WHITE switch

'dimension variables before they are used or you will get a

compiler error!

Dim Cars As Byte

Dim Trucks As Byte

Dim Bikes As Byte

Dim Peds As Byte

Const Debouncedelay = 25

Do

 Debounce Cars_sw , 0 , Cars_sw_pressed , Sub 'red switch

 Debounce Trucks_sw , 0 , Trucks_sw_pressed , Sub 'yellow switch

 Debounce Bikes_sw , 0 , Bikes_sw_pressed , Sub 'green switch

 Debounce Peds_sw , 0 , Peds_sw_pressed , Sub 'blue switch

 Debounce Clear_sw , 0 , Clear_sw_pressed , Sub 'white switch

Loop

End

'Subroutines

Cars_sw_pressed:

 Incr Cars

Return

Trucks_sw_pressed:

 Incr Trucks

Return

Bikes_sw_pressed:

 Incr Bikes

Return

Peds_sw_pressed:

 Incr Peds

Return

Clear_sw_pressed:

 Cars = 0

 Trucks = 0

 Bikes = 0

 Peds = 0

Return

Note how in this program the names of the switches relate to
their function, and the comments tell you which switch is which
colour. These are very good programming practice

147

11.11 Rules about variables

Variabes must start with a letter not a digit
 e.g. Dim Red_cars As Byte not Dim 1cars As Byte
Variabes must not be Bascom reserved(special) words
 e.g. Dim band As Byte not Dim And As Byte
Variables must contain no spaces

e.g. Dim Red_cars As Byte not Dim Red cars As Byte
Variable names should relate to what the variable is used for
 e.g. Dim Red_cars As Byte, not Dim hgashg As Byte
Variable names cannot be used for other things such as constants or subroutines
 e.g. Dim Red_cars As Byte, means yu cannot have Const Red_cars = 12 as well

11.12 Examples of variables in use

A points table for a competition

Dim Blues As Byte

Dim Hurricanes As Byte

Dim Waratahs As Byte

as the season progresses the points are added.
Incr Hurricanes (adds one to their score)

Blues = Blues + 1 (adds one to their score)

Waratahs = Waratahs + 3

Conversions between units

Dim Celcius As Integer

Dim Fahrenheit As Integer

Fahrenheit = 100

Celcius = 32 - Fahrenheit

Celcius = Celcius * 5

Celcius = Celcius / 9

148

11.13 Byte variable limitations

RAM (the memory inside a computer) is capable of storing 1 byte (or 8 bits) of binary data. This is a
finite range of positive, whole numbers from 0 to 255. No negative numbers can be stored, no
decimal fractions, and no number greater than 255.

Binary Number Decimal equivalent
00000000 0
00000001 1
00000010 2

11111101 243
11111110 254
11111111 255

We can see the diference by comparing counting in byte math to counting in the decimal system. In
the decimal system the numbers we are used go from –infinity to +infinity, so the numberline goes on
forever.
Byte arithmetic because it has a finite set of numbers is like having a number line that goes around on
itself.

The difficulty arises when we do arithmetic that exceeds the limits of our range.
e.g. what does 250 + 9 = ? What does 4-7 = ?
When we add 9 to 250 we get 3. It has overflowed 255.
The opposite to OVERFLOW is UNDERFLOW and is seen by using the circular number line above.

149

11.14 Random Numbers

This program generates a random number from 1 to 6 and stores it into a variable in memory
‘ DiceV1.bas
$sim
$crystal = 1000000
$regfile = "attiny26.dat"
Config Porta = Output
Config Portb = Input

Dim dicethrow As Byte

Do
 'generate a random number from 0 to 5
 dicethrow = Rnd(6)
 'change the range to 1 to 6
 dicethrow = dicethrow + 1
Loop
End

The line Dim dicethrow As Byte means allocate to
the program 1 byte of ram to use and refer to it as
dicethrow.

Every variable must be dimensioned before it
can be used.

With variables you can do maths
E.g. add 1 to throw. dicethrow=dicethrow+1
literally means get the contents of dicethrow add
1 to it, and then put the answer back into
dicethrow.

Compile the program and then open the simulator (F2), select the variable dicethrow from the
variables list and use F8 (don’t press run) to step through the program to see the numbers generated
by the program

150

11.15 The Bascom-AVR simulator

Press F2 to

pen the
simulator

Double click
in the yellow
area under
the word

VARIABLE to
select the

variables you
want to
watch.

Press F8 to
step through
the program

and see what
happens to
the value of

the variable at
each step.

151

11.16 Electronic dice project

11.17 Programming using variables – dice

A dice can be made using 7 LEDs (why do we need 7? – look closely at the patterns here)

In the above circuit the LEDs have been labelled to match the pin of porta they are connected to.
Note there is a switch connected to Pinb.6

Fill in the table below which shows which LED are on and whichare off to make a particular
pattern, remember that even though only 7 LEDs are used we need to control the whole port so
need to specify all 8 bits.

 A.7 A.6 A.5 A.4 A.3 A.2 A.1 A.0

 NO
LED

LED 6 LED 5 LED4 LED3 LED2 LED1 LED0

1

2

3

4 off on off on off on off on portA=&B01010101

5

6

152

11.18 Dice layout stage 1

In the diagram the 7 LEDs have been physically arranged to match the dots on the face of a dice,
but to do that the middle LED has had its legs bent so that it lines up with the middle LED but does
not share any breadboard connections with it

153

11.19 Dice layout stage 2

In this second stage the resistors have been added and the wiring has been started for the LEDs,

154

11.20 Dice Layout final

Before the rest of the wiring for the LEDs has been added the switch has been connected, agin
note that it is switch wiring that confuses students the most.

155

11.21 First Dice Program flowchart

156

' DiceV1-random.bas

' 7 leds arranged in a pattern on a breadboard

$crystal = 1000000

$regfile = "attiny461.dat"

Config Porta = Output

Config Pinb.6 = Input

Blu_sw Alias Pinb.6

Dim Dicethrow As Byte 'a variable to hold the value

Const Dicedisplay = 80

Const Displaytime = 3 'waiting time in seconds

Do

 Dicethrow = Rnd(6) 'get a random num from 0 to 5

 Incr Dicethrow 'make it from 1 to 6

 If Dicethrow = 1 Then Porta = &B0....... 'turns on 1 led

 If Dicethrow = 2 Then Porta = &B0....... 'turns on 2 leds

 If Dicethrow = 3 Then Porta = &B0....... 'turns on 3 leds

 If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds

 If Dicethrow = 5 Then Porta = &B0....... 'turns on 5 leds

 If Dicethrow = 6 Then Porta = &B0....... 'turns on 6 leds

 Waitms Dicedisplay 'wait a little

 If Blu_sw = 0 Then 'if switch is pressed

 Dicethrow = Rnd(6) 'get a random num from 0 to 5

 Incr Dicethrow 'make it from 1 to 6

 If Dicethrow = 1 Then Porta = &B0....... 'turns on 1 led

 If Dicethrow = 2 Then Porta = &B0....... 'turns on 2 leds

 If Dicethrow = 3 Then Porta = &B0....... 'turns on 3 leds

 If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds

 If Dicethrow = 5 Then Porta = &B0....... 'turns on 5 leds

 If Dicethrow = 6 Then Porta = &B0....... 'turns on 6 leds

 Wait Displaytime

 End If

Loop

End

In this case we don’t need any debounce timing because there is a long delay after the switch is
pressed.

11.22 A note about the Bascom Rnd command

It is actually quite difficult to generate random numbers; microcontrollers use a maths equation to
do it. The problem with this is that the sequence is always the same, you can check this out using
the simulator or by modifying your dice program later to see that the sequence is always the
same. To get around this problems we use a little trick; we always have the program generating
random numbers even when the button isn’t pressed, that way the position in the sequence when
we press the button cannot be guessed.

157

11.23 Modified dice

In this dice the number stays on the screen and when the switch is pressed it displays 30 random
numbers before stopping on the 30th

158

' DiceV2-random.bas

' 7 leds arranged in a pattern on a breadboard

$crystal = 1000000

$regfile = "attiny461.dat"

Config Porta = Output

Config Pinb.6 = Input

Set Portb.6

Blu_sw Alias Pinb.6

Dim Dicethrow As Byte 'a variable to hold the value

Dim I As Byte

Const Dicedisplay = 100

Dicethrow = 1 'initial display is 1

If Dicethrow = 1 Then Porta = &B0 'turns on 1 led

If Dicethrow = 2 Then Porta = &B0 'turns on 2 leds

If Dicethrow = 3 Then Porta = &B0 'turns on 3 leds

If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds

If Dicethrow = 5 Then Porta = &B0 'turns on 5 leds

If Dicethrow = 6 Then Porta = &B0 'turns on 6 leds

Do

 Dicethrow = Rnd(6) 'get a random num from 0 to 5

 If Blu_sw = 0 Then 'if switch is pressed

 For I = 1 To 30 'do 30 random numbers

 Dicethrow = Rnd(6) 'get a random num from 0 to 5

 Incr Dicethrow 'make it from 1 to 6

 If Dicethrow = 1 Then Porta = &B0 'turns on 1 led

 If Dicethrow = 2 Then Porta = &B0 'turns on 2 leds

 If Dicethrow = 3 Then Porta = &B0 'turns on 3 leds

 If Dicethrow = 4 Then Porta = &B01010101 'turns on 4 leds

 If Dicethrow = 5 Then Porta = &B0 'turns on 5 leds

 If Dicethrow = 6 Then Porta = &B0 'turns on 6 leds

 Waitms Dicedisplay 'wait here a while

 Next

 End If

Loop

End

Exercises for the dice program
1. Do a trial of at least 200 presses and draw a tally of the results, how ‘fair’ is our dice?
2. Merge the two progams above so that random numbers are displayed until the button is

pressed, then 10 random numbers are generated and it stops for 5 seconds
3. Make the electronic dice display 2 random numbers to simulate 2 dice
4. Make your own dice that is different to this described so far with some interesting sound

feature

Achieved Merit Excellence

Do number 1 and 2 above with
comments in the program

Also implements 3 above and
uses lots of comments to
explain the program

Implements 4 above with good
explanatory comments in the
program.

159

11.24 Modified Knightrider

A neat feature for the Knightrider program would be if the speed of the sequence could be varied.

So for the same reasons as before the switches need checking often; so after each led in the
sequence of LEDs, read the switches, wait a preset amount of time, if one button is pressed
increase the delay time, if the other button is pressed decrease the delay time.
The switches should be checked often so that they can detect user input and I have chosen 1mS
because its easy to do the maths with 1mS.

To do this we implement a loop within the program that initially begins at the value of flashdelay
and counts down to 0, a second variable checkdelay is needed as a copy of flashdelay

start

flashdelay=1000

check switches
incr/decr flashdelay

next led in sequence

checkdelay=flashdelay

decrease checkdelay

N checkdelay=0
Y

Dim Flashdelay As Word
Dim Led As Byte
Dim Checkdelay As word
dim direction as bit
Flashdelay = 1000
Do

 Checkdelay = Flashdelay
 Do
 Debounce Sw1 , 0 , Decrflashdelay, Sub
 Debounce Sw2 , 0 , Incrflashdelay, Sub
 Decr Checkdelay
 Loop Until Checkdelay = 0
 If Direction = 0 Then
 Gosub Nextright
 Else
 Gosub Nextleft
 End If
Loop
End
'

Subroutines
Decrflashdelay:
 Decr Flashdelay
Return

Incrflashdelay:
 Incr Flashdelay
Return

Nextright:
…
Return

Nextleft:
…
return

160

12 Basic displays

12.1 7 segment displays

It is important to understand a new device so that it
can be used with confidence. The 7 segment display
is simply a number of LEDs put together inside a
package with pins sticking down so that they can be
soldered into a PCB. They are still very common
today in many electronic products.

They are available in many different styles and sizes.

The first thing to know is how the LEDs are connected within the package.

Each LED is a segment of the display and they are labelled a, b, c, d,e,f,g

To create the number 2 you turn on
segments a, b, d, e, g

The LEDs have separate Anodes but
COMMON Cathodes so our display is
called ‘common cathode’. All the
cathodes (negative ends) are connected

161

togther and will be connected to the negative (0V or ground) of the circuit.

This display is the WS1001GAS, we had no datasheet for it, so had to figure out the wiring for
ourselves.

It had 10 pins and using a powersupply on 5V and a resistor we figured out what each pin does. Then
realised that tgis seems to be a reasonably standard setup for the displays.
A component for the Eagle library was created so it could be used in making our own schematics.

162

163

The schematic was started.

You only have to connect one of the two pins 3 or 8 to gound not both.
We didn’t connect the pins on the schematic as it is easier to connect the pins on the layout and figure
out which is best and then draw the schematic afterwards.

164

Start with the display, the 8 resistors and the power conections to the breadboard
We had to use two breadboards because the display was too big to fit onto one.

Stage two was to connect a switch to the circuit.

165

And finally stage 3 to connect the microcontroller IO pins to the segments

After wiring the schematic was completed in Eagle

166

Outcome development in Technology education includes not just making the product (outcome) but
includes the development of it. Things such as tables to help manage your programming will help you
achieve really good results in Technology. Complete the table below and use things like tables yourself
to logically lay out things .

To display the number five, only the segments a,c,d,f &g must be on. and the code &B01100111 must
be written out the port. Work out the other values required to show all the digits on the display and
determine their corresponding values in Hex and Decimal and put them in the table below
NOTE portA.7 isnt used so it will always be 0, the order is 0cdebafg for this wiring

Complete this
table for
yourself

Display Segments ON Segments
OFF

PORT Binary command
Segment order is 0cdebafg

0

1

2

3

4

5 a,c,d,f,g b,e &B01100111

6

7

8

9

A

b

C

d

E

F

g

H

167

Another different 7 segment display

This particular display was made by OasisTek.
Note that it has 2 decimal points (LDP and RDP)

This view is from the front of the display; the + indicates the
pins in the two rows underneath.
Pin 1 is segment A
Pin 2 is segment F
Pin 3 is the common cathode
Pin 4…

Note that although pins 7,8 &15 don’t exist they are still
counted!!

Connect the 7segment display to the breadboard, so that the common cathode is connected to the
0V/GND line. Through a current limit resistor (e.g. 390R) and a test wire check the segment works .

Each segment should glow like segment a does in the next picture.

168

In the photo below note the side of the display has been written on to help identify where the pins are

.

After testing the segment connect it to the correct pin of the microcontroller.
Then connect and test each segment in turn until all 7 are connected.

169

Complete this diagram
with the rest of the
connections to the 7
Segment display, then
make the circuit on
breadboard. On the
next page you will find
a layout partially
started.

Draw a flowchart and
write a program to
display the numbers 0
to 9.

Design as many letters
of the alphabet as you
can and write your
name. Print your
name program for
your workbook.

170

Complete this diagram with the connections for all of the seven segments

CAN YOU MAKE THIS 7 SEGMENT DISPLAY INTO A DICE?

171

12.2 Alphanumeric LED displays

These are very similar to the 7 Segment, but have multiple segments so that you can easily make letters
as well as digits.

Here there are 16 segments plus 2 decimal points.
Now the ATtiny461 doesn’t have 16 I/O pins so we combined a couple of the segments and used only
14 I/O pins of the micro.

In this schematic the top two segments A1 and A2 were combined and used as 1 also the bottom two
segments D1 and D2.

172

Here is how the layout looked

See below how A1 and A2 were linked together to one I/O pin (but 2 100ohm resistors were used)

173

13 TDA2822M Portable Audio Amplifier Project

This project is based around the
TDA2822M IC (integrated
circuit) from a company called
SGS Thompson
Microelectronics.

The project involves making a
portable (battery powered) audio
amplifier that can be used with an
MP3 player and keeping a
portfolio of the processes used.
You may design and make or
modify something else fro your
case

You will design and make
the printed circuit board and
case for the amplifier. You
may use the provided
speakers (50mm, 8 ohm
0.5W) or find your own.

174

13.1 Portfolio Assessment Schedule

Achieved Merit Excellence

Workbook content

Printed Datasheet Printed Datasheet Printed Datasheet

Component Price List Component Price List Component Price List

Schematic Diagram
from Eagle

Schematic Diagram from
Eagle

Schematic Diagram from Eagle

Layout Diagram from
Eagle

Layout Diagram from
Eagle

Layout Diagram from Eagle

OHT of PCB OHT of PCB OHT of PCB

Board works All solder joins reliable,
heat shrink used correctly
to strengthen joints, stress
relief on all wires

All solder joins reliable, heat shrink
used correctly to strengthen joints,
stress relief on all wires

CAD Design drawing for
case

At least two design
drawings for case With
changes made

AT least two design drawings for case
With detailed explanation for changes

Photo of case

Photos of case
+ some description of
process of making

Photos of case
With detailed explanations of process
of making

Final Outcome

Quality outcome, (refer to
codes of practice)

Final product shows some flair,
elegance, innovation or creativity, and
explanation is given of these elements

Workbook Presentation

Material is readable All materials are clear,
labelled, named and follow
a logical sequence

Overall presentation is easy to follow
and all materials are very well
presented, a table of contents is given
and page numbers are used.

Key Competencies

Interacts with others
occasionally or when
asked to work in groups

Works cooperatively,
relates easily and shares
workshop resources freely
with others.

Helps others and seeks others help in
the workshop often

Cleans up after self Works cooperatively with
others to clean up the
workshop

Takes initiative in keeping the
workshop clean and tidy, puts tools
and materials away for others
regularly

Generally uses
workshop time well

Efficient use of workshop
time

Disciplined, optimised and efficient
use of workshop time

175

13.2 Initial One Page Brief

 Project: TDA2822 Portable Audio Amp Date: _____

Client, customer or end-user: ME!

Description of the problem, issue, need or opportunity(diagrams may be required):
MP3 players are useful personal items however the music cannot be shared with
others

Conceptual Statement:
Design and construct a portable audio amplifier to allow music to be played when
with a group of friends

System Block Diagram: (include all input and output devices)

Further written specifications:
Need to make or find a case for it all

176

13.3 TDA2822M specifications

Electronic components are complex (especially IC’s) and manufacturers provide detailed specifications
called datasheets for their products.

Find and print the datasheet for your portfolio of the TDA2822M, it is easily available on the WEB. It
contains things such as the pin connections, a simplified internal schematic diagram, recommended
circuits and voltage, current and power specifications.

177

13.4 Making a PCB for the TDA2822 Amp Project

Open eagle and create a new schematic.
From your schematic Click the ADD button in the toolbox and the ADD dialog box will open (it may take
a while)

Open the CLS library
Add all of the following parts

LIBRARY PART Qty
cls REU-0204/7 6
cls 2,54/0,8 10
cls C-EU050-025x075 2
cls C-POLB45181A 5
cls C-POLE5-10,5 2
cls led 5MM 1
cls TDA2822 1
cls RTRIMMECP10S 2
cls GND 3

13.4.1 Moving parts

Move the parts around within the schematic editor so that they are
arranged as per the schematic below.

178

13.4.2 Wiring parts together

Select the net button from the toolbox.
Remember to left click on the very end of a component and
draw in a straight line either up, down, left or right.

Left click again to stop at a point and draw before drawing
in another direction.

Click at another component or net to finish the connection.

13.4.3 ERC

The ERC tests the schematic for electrical errors.

Errors such as pins overlapping, and components unconnected are very common.

The ERC gives a position on the circuit as to where the error is; often zooming in on that point and
moving components around will help identify the error.

You must correct all errors before going on.

13.4.4 Laying out the board

Open the board editor

Remember: once you have started to create a board always have both the board and schematic
open at the same time, never work on one without the other open or you will get horrible errors
which will require you to delete the .brd file and restart the board from scratch.

179

13.4.5 Minimise airwire length

Move the components into
the highlighted area. Keep
the components in the lower
left corner near the origin
(cross).

Reduce the size of the
highlighted area you are
using for the components.
Then zoom to fit.

Progressively arrange the
components so that there is
the minimum number of
crossovers.

As you place components
press the Ratsnest button
often to reorganize the
Airwires. Eventually your
picture will look like the one
here.

Good PCB design is more about placement of components than routing, so spending most of
your time (90%) doing this step is crucial to success.
You want to make track lengths as short as possible

13.4.6 Hiding layersto help you see the airwire paths clearly

The DISPLAY button in the TOOLBOX is used to turn on and off different sets of screen information.
Turn off the names, and values while you are placing components. This will keep the screen easier to
read. Turn off the layer by selecting the display button and in the popup window pressing the number of
the layer you no longer want to see.
Turn off tnames and tvalues now

180

13.4.7 Routing Tracks

Now is the time to replace the airwires with actual PCB tracks. Tracks need to connect all the correct
pads of the components together without connecting together other pads or tracks. This means that
tracks cannot go over the top of one another!
Select the ROUTE button and on the Toolbar make sure the Bottom layer is selected (blue) and that the
track width is 0.04. Left click on a component. Note that around your circuit all of the pads on the same
net will be highlighted.

Route the track by moving the mouse and left clicking on corner points for your track as you go. YOU
ONLY WANT TO CONNECT THE PADS ON THE SAME NET, DON'T CONNECT ANY OTHERS OR
YOUR CIRCUIT WILL NOT WORK.
Track layout Rules

1. Route tracks so that no track touches the leg of a component that it is not connected to by
an airwire

2. No track may touch another track that it is not connected to by an airwire
3. Tracks may go underneath the body of a component as long as they meet the above rules

After track routing add holes for mounting the board and any for looping wires through to act as
stress relief DO NOT ROUTE TRACKS BETWEEN THE PINS OF IC’S

13.4.8 Make the Negative Printout

(Remember the text on the PCB appears
reversed)

 * Open TDA2822verA.brd in Eagle
 * From within the Eagle Board Editor start the
CAM Processor
 * select device as PS_INVERTED
 * Scale = 1
 * file = .ps
 * make sure fill pads is NOT selected this
makes small drill holes in the acetate which we
use to line up the drill with when drilling
 * for layers select only 16,17,18 and 20,
 * make sure ALL other layers are NOT
selected.
 * Select process job

Open the TDA2822verA.ps file with Ghostview.
Double check that you can see the drill holes
and then print it on to an OHT (transparency)

181

13.5 Extra PCB making information

Grids
An important point to note is that the rulers and grids in Eagle are
generally in inches, this is because IC’s (such as the TDA2822) and
other components have legs that are 0.1 inch between centres.

The current grid spacing is shown in the layout window most likely as
0,05 inch, if you want to see the actual grid, type grid on. For all
layouts we will use inches because that is the spacing of component
legs. Although when we specify a drill size wew ill use mm. Also
never change the grid size, we will use 0.05 inch (50 thou). If you
want ot start squeezing things together – well don’t especially in your
first few boards. it just makes the boards hard to etch and to solder.

Track width, copper thickness and current ratings
The board we buy is 2oz (ounces), that means the amount of copper in one square foot of pcb is 2oz,
That equals 0.0028 inches thick (2.8 thou – or just to confuse you PCB people often say 2.8mils). We
generally use 0.032 or 0.04 inch tracks on our boards in the classroom as they print and etch easily.

Even though tracks are made of copper and are a conductor, they are not perfect conductors and have
some resistance. This means that as charges move through the circuit the tracks get warm! The thinner
they are the higher the resistance and the warmer they get. If they get too hot they will burn up (and
smoke and possibly flames will appear).

A track of 0.04 inches width on the boards we use is about 0.006 ohms per inch will when carrying a
current of 4 amps will rise in temperature by around 10 degress which is ok. Our circuits don’t in general
need to carry 4 amps but its good to know this sort of thing. If you want to carry 10amps then go to
about 0.15 inch to be on the safe side!

Grounding
The ground connection is a circuit is the path for current back to the power supply, and the bigger and
the more of it we can make the better. We almost always make single sided pcbs so its a good idea to
put a ground right around the whole circuit board. There is an example of using polygon fill later on.

Forwards and Backwards
You must always have your schematic and layout open at the same time, if you have only one open
then any changes you make to one will not appear on the other. Then when you open them both Eagle
will complain and say that no forward-backward annotation will happen, now you are stuffed, it can
actually take longer to fix annotation problems tha starting all over again!

182

13.6 Component Forming Codes of Practice

Component leads are bent at least 2 mm away
from the component body, not bent close to the
body as this would stress the component and
reduce its life expectancy.

The component is placed firmly against the PCB.
This helps mechanical rigidity. (Components
would only be put up off the board if during
normal operation they would become warm
enough to damage the PCB itself)

If there is not enough room to lay the component
flat on the PCB then one leg may be bent over.

Under the pcb the component leads are bent
over slightly to hold the component in place
during soldering, they are not bent flat as then it
would be difficult to remove the component later
on.

Component leads are cut off after soldering; during soldering they act as a heat sink and keep
excess heat away from the component.

183

13.7 TDA2811 wiring diagram

184

13.8 SKETCHUP Quick Start Tutorial

1. From the menu select Window then Model Info and then
select units, set up units as shown in this picture.

2. Close this dialog box
3. Select the Rectangle tool in the toolbox (the set of tools on

the left hand side of the SketchUp window).
4. Click the nouse mouse pointer once on the origin and move it

right and upwards to start drawing a rectangle (do not click
again to stop drawing).

5. In the bottom right hand
corner the dimensions of the
rectangle are shown; without
clicking there just type on the keyboard 200,100 and press Enter. The
rectangle will take on the dimensions you have typed in.
6. Your rectangle may well have disappeared because you are
zoomed out too much. From the tool box, identify the zoom extents

tool by hovering the mouse pointer over the buttons. Get use to the other zoom controls now and
zoom out a little.

7. From the menu select Window then Display Settings and change the Edge Color to By Axis (now
you can see whether what you are drawing
lines up with the axis you want it in).

8. Under the menu is the tool bar identify the Iso
view button (isometric) and click it.

9. In the toolbox identify the Push/Pull tool and
then move the mouse pointer over the
rectangle, the rectangles surface will change in
appearance. Click once on the surface and
drag the rectangle upwards along the blue axis
into a 3D box; type 75 as a dimension and
press enter. Your box should be aligned to the
three axes and the edge colours should match
the axes colours.

10. Select the Tape Measure from the toolbox and
click on the upper front right corner and then move along the green
axis, type 30 and press enter, a grey construction point will appear.
From the same corner place another construction point 50mm down
the blue axis.

11. From the toolbox choose the line
tool and draw a line between the
two construction points, notice
how the cursor snaps to the
construction points as it nears
them (it also snaps to edges,
ends and centre points and each
has a different colour).

12. Using the push pull tool push the
new surface completely away to
change your box to one with a
sloping front panel.

13. From the toobox select the Dimension tool, add
dimension lines by hovering the mouse over an
edge line (it will change to yellow), then click on the
line and drag the new dimension away from the
edge to place it.

185

13.9 Creating reusable components in SketchUp

Creating a component that you can reuse in other SketchUp drawings is simple if you follow a few simple steps

1. You need a large surface on which to create the component. For
example, if we are to make a breadboard, create a flat horizontal surface
larger than the breadboard to start with
(e.g. 300 x 300mm).
2. Create the base for the
breadboard component (e.g. a
rectangle 165 x 55 mm).
3. Extrude the breadboard 10mm.
4. Use the TapeMeasure button to
mark out the two points for the groove
in the centre of the breadboard
5. Then draw two parallel lines.
6. Extrude downwards 3 mm to
make the slot
7. Select all of the entities you
want to include in the component.
Then right click and in the drop down
menu select Make Component.
8. The Create Component dialog
box opens:
o Name. Type a name for the
component.
o Description. Optionally enter a
description of the component.
o Glue to. Select a glue-to
alignment. The most flexible choice for
components you want to glue is "Any."
o Cut opening. Select this if you
want the component to cut an opening in the face to which it is being
glued. For example, you would
typically use this option for a
window.
9. You need to view the
components in your model. From
the menu select Window then click
Components. In the Components
window click the “In Model” button
(little house),
10. In the components window
right click the component and save
it somewhere you can find it again.

Adding a component to another drawing:
1. In the new SketchUp drawing
2. From the menu choose File then Import
3. Select the component you want to import
4. It should ‘glue’ onto faces of your model.

186

14 Basic programming logic
Using our knowledge of programming so far we can create a quiz game controller.
We have some important specifications we need to meet with this program.

Specifications
When the user presses their button, there is a short beep and all the other users are locked
out until the reset button is pressed

14.1 Quiz Game Controller

In this program we will cover everything that has been learnt so far, make sure you understand
throroughly everything that is going on.
We will use

 Input circuits

 Output circuits

 Input code

 Output code

 Variables

 Process code

In this program we will use the concept of

Do
Loop unitl ….

to make the program lock out other users and wait for the quiz master to press the reset button.
Here is the full project including using veroboard as a prototyping tool.

187

14.2 Quiz game controller system context diagram

14.3 Quiz game controller block diagram

188

189

14.4 Quiz game controller Algorithm

Note the addition to the variables table, we will need to store data in the program, the winner of the round.

190

14.5 Quiz game schematic

The circuit for the device has been drawn in eagle. The decisions about where to connect the
LEDs and switches are not really important, but do take note that three of the switches are
connected to the pins used for programming. This means that while the programming cable is
connected it may interfere with the correct operation of the program.

191

14.6 Quiz game board veroboard layout

It was decided to use veroboard for the circuit rather than design a PCB. Veroboard or strip board
is a highly useful pcb for prototyping one off circuits. As per the picture(below left) it is a predrilled
board with tracks at 0.1 inch spacing so DIP IC packages and sockets fit exactly. The copper
tracks will occasionally need to be cut in certain places. The board (below right) shows where cuts
have been made using a drill bit. Don’t use an electric drill just turn the bit by hand so that you cut
through the copper track and not the board. I have a 4.5mm drill bit with some tape around it so
that I don’t cut my fingers while using it.

192

Plan the layout of vero board first

193

Quiz game Veroboard

194

Points of note when using veroboard

A loop of wire
soldered onto the
board acts as
stress relief for
the wires going
off board to
components such
as the battery,
switches and
piezo

The board
power supply
lines have
been coloured
in red and
black to make
design easier

Remember to cut all of
the 10 tracks under the
IC so that the pins don’t
short out!

When I start laying
out veroboard for a
project I first plan it
using either
software or I place
as many of the
components as
possible onto the
board first before I
start cutting any
tracks so I can
move them around
before commiting to

my design.

Remember to cut the
tracks between the
LEDs so they don’t
short cirucuit

195

14.7 Quiz Controller flowchart

196

14.8 'Quiz Controller program code

'compiler setup

$crystal = 1000000

$regfile = "attiny26.dat"

'microcontroller setup

Config Porta = Output

Config Portb = Input

'hardware aliases

Grnled Alias Porta.7 'use port for output

Yelled Alias Porta.6

Redled Alias Porta.5

Ornled Alias Porta.4

Piezo Alias Porta.3

Resetsw Alias Pinb.0

Grnsw Alias Pinb.1 'use pin for input

Yelsw Alias Pinb.2

Redsw Alias Pinb.3

Ornsw Alias Pinb.4

Set Portb.0 'activate pullup resistors

Set Portb.1 'for the 5 switches

Set Portb.2

Set Portb.3

Set Portb.4

'a simple test pattern on powerup on the leds to show they work

Set Grnled

Waitms 100

Set Yelled

Waitms 100

Set Redled

Waitms 100

Set Ornled

Waitms 100

Sound Piezo , 90 , 200

Waitms 100

Sound Piezo , 90 , 200

Waitms 1000

'--

' Declare Variables

Dim Winner As Byte

'--

197

'program starts here

Do

 Winner = 0 'reset the winner flag

 Do

 If Grnsw = 0 Then

 Set Grnled

 Sound Piezo , 90 , 200 'make a beep

 Do 'stay here until reset pressed

 Loop Until Resetsw = 0

 Reset Grnled

 Elseif Yelsw = 0 Then 'its important to use an elseif

 Set Yelled 'rather than separate if statements

 Sound Piezo , 90 , 200 'make a beep

 Do 'stay here until reset pressed

 Loop Until Resetsw = 0

 Reset Yelled

 Elseif Redsw = 0 Then

 Set Redled

 Sound Piezo , 90 , 200 'make a beep

 Do 'stay here until reset pressed

 Loop Until Resetsw = 0

 Reset Redled

 Elseif Ornsw = 0 Then

 Set Ornled

 Sound Piezo , 90 , 200 'make a beep

 Do 'stay here until reset pressed

 Loop Until Resetsw = 0

 Reset Ornled

 End If

Loop

End

'note you could add other features to the device such as:

' having a different number of beeps for each player

' have some indication that the device is on as normally there are no

LEDs lit,

' add a timing fucntion that gives players a fixed number of seconds to

answer

' a counter that tracks how often each person has won

' ...

198

14.9 Don’t delay - use logic

Delays such as wait and waitms can become real headaches in longer or complex programs, it is
vital to start to learn how not to use them! Here is the do-loop.

Although they are both looping structures the do-loop is significantly different to the for-next; as
they can be used very differently when programming. With a for-next we repeat something a fixed
number of times, and we know the number of times before the loop starts. With a do-loop we are
repeating something a number of times that is unknown at the time we start the loop.

Take the example of hammering a nail

E.g. in real life we don’t say hammer the nail 5 times, we
say hammer the nail UNTIL IT IS IN
 Do
 Gosub hammer_nail
 Loop until nail_height = flat_in_wall

The do-loop is similar to the for-next however in the do-loop we have to remember to write the
code to clear the variable everytime we start the loop (count=0) and increment the variable (incr
count).
Here is the siren code rewritten using do-loops so you can see how to structure it.
Siren:

 For count = 0 to Maxcount1

 Waitus Halfperioddelay1

 Set Piezo

 Waitus Halfperioddelay1

 Reset Piezo

 Next

 For count = 0 to Maxcount2

 Waitus Halfperioddelay2

 Set Piezo

 Waitus Halfperioddelay2

 Reset Piezo

 Next

Return

Siren:

 count=0

 Do

 Waitus Halfperioddelay1

 Set Piezo

 Waitus Halfperioddelay1

 Reset Piezo

 Incr count

 Loop until count = Maxcount1

 count=0

 Do

 Waitus Halfperioddelay2

 Set Piezo

 Waitus Halfperioddelay2

 Reset Piezo

 Incr count

 Loop until count = Maxcount2

Return

Here we aren’t using the do-loop any differently to the for-next I am only showing you how to write
the code properly.

199

Sometimes in a program we want to repeat something, but we don’t know how many times it has
to be repeated, we just wait or do something until we are told to move on.
e.g. Do
 Loop Until clear_sw=0
In this case the length of time we are waiting is unknow as we are waiting for a user.

But in a program we may have to wait for some calculation to complete
e.g. Do
 gosub wash_clothes
 gosub rinse_clothes

gosub measure_water_mirkiness
Loop Until water_mirkiness < 10

What is the point of washing clothes 100 times, when they might only need 50 or they might
actually need 200 so we wash the number of times it takes for the clothes to be clean.
We will use do-loop like this in the next solutions.

Now back to the delay issue. To begin to solve the issue you should understand that a delay
routine in a program is simply a loop that repeats a large number of times e.g.in this loop we are

using our own counter to keep track of the time. We start it at 1000 and
then decrement its value until it gets to 0 then we toggle the LED.

If this loop takes approximately 2 uSec (microseconds) to complete and
does it 1000 times then it will give a delay of 2 mSec

How many times would the loop have to repeat to delay:

1mS ?
10mS ?
1 Second ?
1 Minute ?

In some programs it is acceptable to put in a very small delay, in other
programs it is not. You must start to think through the consequences of
putting a delay within your specific program.

At this stage we are working on simple programs so we can see the
consequences of a small delay. In big programs the consequences of
delays can be very hard to fix!

200

Here is a way of speeding up or slowing down the rate at which an LED is flashing.
A variable is used to count 1mS delays. We can use 1mS delays because when a user presses a
switch they will always press it for longer than 1mS. Now we add to the program the ability for
thew user to prss a switch to change the value of the delay, therefore making the flashing rate
shorter or longer.

Dim count as word
Dim delay as word

Delay = 1000

do
 count=delay
 do
 if swa=0 then decr delay
 if swb=0 then incr delay
 waitms 1
 decr count
 loop until count = 0
 toggle led
loop

Note that we need to keep 2 variables,
one is DELAY which we increase and
decrease using the switches. The other
is a temporary copy of it COUNT which
is decremented within the loops.

Although the main problem is fixed
there are some other problems to fix:

1. There are debounce issues
2. When you keep incrementing

delay eventually it will get to
65535, and another increment
will cause it to roll over or
overflow back to 0 (an If-then
would help you)/

3. Also when delaycount gets
down to 0, another decrement
will cause it to underflow to
65535!(another if-then would fix
this)

4. The resolution (degree of
change) of our delay program
is not very good if we increase
or decrease each time by one.
Perhaps a bigger
increment/decrement value
might be more useful (instead
of incr delay we could use
delay=delay +50).

201

15 Algorithm development – an alarm system

When learning to program students find it straight forward to write programs which contain one
simple process and which require a few lines of code; however you must move on to the next level
and this requires learning about another way of thinking called algorithmic thinking. This is seeing
a problem as an ordered and organised process of steps. Because of their growing knowledge of
computer syntax students generally begin programming at the keyboard rather than with thinking
through a problem and using a pen and paper to organise their program. Programs become
confused very quickly in this situation.

Note that with technological practice (at all levels) students are required to plan, trial and test
ideas. So when writing software students must not write software without spending time planning
it first AND keep a record of their work.

In these next examples instead of presenting a final prototype the process of development is
produced from the very simple to the more complex (as complex as we will go with flowcharts).
The process of development of a program should be incremental – don’t try and do everything in
one program all at once. All that does is produce loads of errors and even if you fix the errors the
software probably wont work!

15.1 Simple alarm system – stage 1

Here is a very simple alarm. When the trigger switch is
pressed the LED flashes and it makes a siren (using our
siren subroutine from the previous programs)

In this first alarm the alarm only sounds while the switch is
pressed

piezopiezo

Trigger_Sw

Alarm Unit

 Alarm_LED

202

15.2 Alarm System Schematic

Note that the connections.
Piezo on portA.5
LED on portA.3
Switch on pina.0
NOTE THE NAMES
PORT for outputs
PIN for inputs

The next thing to do is to record the configurations for the I/O devices.

Config Porta = Output

Config Pina.0 = Input

Trigger_sw Alias Pina.0

Alarm_led Alias Porta.3

Piezo Alias Porta.6

203

Here is one
INCORRECT attempt
at wiring up the circuit

There are several
problems with the
wiring; how many can
you spot?

204

Problems:

1. forgotten the red
and black power
wires to the
breadboard.

2. the LED and
resistor dont link on
the breadboard.

3. the switch wring
is quite incorrect.

4. there is a resistor
in series with the
piezo.

205

206

'B Collis 2009

'file: ALARM_1.BAS

$regfile = "attiny26.dat"

$crystal = 1000000 'rate of executing code

Config Porta = Output

Config Pina.0 = Input

Trigger_sw Alias Pina.0 'white switch

Alarm_led Alias Porta.3

Piezo Alias Porta.6 'use useful name PIEZO not PORTb.3

Const Flashdelay = 50

Const Halfperioddelay1 = 200 ' first tone 1/2 period

Const Halfperioddelay2 = 500 ' second tone 1/2 period

Const Maxcyclecount1 = 350 'length of first tone

Const Maxcyclecount2 = 150 'length of second tone

Dim Cyclecount As Word 'keep count of number of cycls(periods)

Dim Sirens As Byte

Do

 If Trigger_sw = 0 Then

 Gosub Siren_sound

 'flash the led rapidly

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

End if

Loop

End

Siren_sound:

 For Cyclecount = 0 to Maxcyclecount1

 Waitus Halfperioddelay1

 Set Piezo

 Waitus Halfperioddelay1

 Reset Piezo

 Next

 For Cyclecount = 0 to Maxcyclecount2

 Waitus Halfperioddelay2

 Set Piezo

 Waitus Halfperioddelay2

 Reset Piezo

 Next

Return

Note how we have reused the software for the siren created earlier.

207

15.3 A simple alarm system – stage 2

In this second alarm the IF-THEN has been replaced by a DO-LOOP-UNTIL

It is a much tidier piece of code, replacing the If trigger_sw=0 with a do loop until separates the two
concepts of waiting for the switch and what happens after it is pressed. This reduces the complexity
of the main loop by a layer,

The problem with this
bit of code is that the
siren keeps going
until the power to the
circuit is turned off.
This is not very
satisfactory.

'B Collis 2009

'file: ALARM_2.BAS

$regfile = "attiny26.dat"

$crystal = 1000000 'rate of

executing code

Config Porta = Output

Config Pina.0 = Input

Trigger_sw Alias Pina.0 'white switch

Alarm_led Alias Porta.3

Piezo Alias Porta.6

Const Flashdelay = 50

Const Halfperioddelay1 = 200 ' first tone 1/2 period

Const Halfperioddelay2 = 500 second tone 1/2 period

Const Maxcyclecount1 = 350 'length of first tone

Const Maxcyclecount2 = 150 'length of second tone

Dim Cyclecount As Word 'keep count of number of cycles

Dim Sirens As Byte

'wait for trigger switch to be pressed

Do

Loop Until Trigger_sw = 0

Do

 Gosub Siren_sound

 'flash the led rapidly

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

Loop

End

208

15.4 A simple alarm system – stage 3

In this version we the
siren only goes 10
times and then the
LED stays flashing.

The problem with this
is that there is no
way to reset the
system without
removing the power
from it. All the code
realy needs to be
inside the main do-
loop.

'B Collis 2009

'file: ALARM_3.BAS

$regfile = "attiny26.dat"

$crystal = 1000000 'rate of executing code

Config Porta = Output

Config Pina.0 = Input

Trigger_sw Alias Pina.0 'white switch

Alarm_led Alias Porta.3

Piezo Alias Porta.6

Const Flashdelay = 50

Const Halfperioddelay1 = 200 ' first tone 1/2 period

Const Halfperioddelay2 = 500 ' second tone 1/2 period

Const Maxcyclecount1 = 350 'length of first tone

Const Maxcyclecount2 = 150 'length of second tone

Dim Cyclecount As Word 'keep count of number of cycles

Dim Count As Byte

'wait for trigger switch to be pressed

Do

Loop Until Trigger_sw = 0

For Count = 1 to 10

 Gosub Siren_sound

 'flash the led rapidly

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

Next

Do

 'flash the led continuously

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

Loop

End

209

15.5 A simple alarm system – stage 4

In the 4th version we
add a second switch to
reset the alarm.

The problem with this
stage of the alarm
project is that the
alarm is always on,
there is no way to turn
it on or off, apart from
the power supply.

'B Collis 2009

'file: ALARM_4.BAS

$regfile = "attiny26.dat"

$crystal = 1000000

Config Porta = Output

Config Pina.0 = Input

Config Pina.1 = Input

Trigger_sw Alias Pina.0 'my white switch

Reset_sw Alias Pina.1 'my green switch

Alarm_led Alias Porta.3

Piezo Alias Porta.6

Const Flashdelay = 50

Const Halfperioddelay1 = 200 ' first tone 1/2 period

Const Halfperioddelay2 = 500 ' second tone 1/2 period

Const Maxcyclecount1 = 350 'length of first tone

Const Maxcyclecount2 = 150 'length of second tone

Dim Cyclecount As Word 'keep count of cycles

Dim Count As Byte

Do

 'wait for trigger switch to be pressed

 Do

 Loop Until Trigger_sw = 0

 For Count = 1 to 10

 Gosub Siren_sound

 'flash the led rapidly

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

 Next

 Do

 'flash the led until the reset button is pressed

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

 Loop Until Reset_sw = 0

Loop 'return to the start

210

15.6 More complex alarm system

Program for a more sophisticated alarm unit, with 2
switches and 2 LEDs. In this alarm the reset switch has
been replaced by a set switch which is used to
activate and deactivate the alarm.

211

 Alarm 5 system block diagram:

15.7 Alarm unit algorithm 5:

Initially the two LEDs are off

When SetSw is pressed
the program begins to monitor Trigger_Sw
and Set_LED comes on

If TriggerSw is detected Alarm_LED flashes
If SetSw is pressed Alarm_LED stops

PROBLEMS WITH THIS VERSION
When thinking through this after planning it it a problem was identified.

When the alarm is turned on it waits at point A for the SET switch to be pressed. When it is pressed
the program continues on to point B where it checks the trigger switch, it is not triggered so it takes
the path to the loop until unset at point C where it immediately exits the loop. This is caused by the
program being carried out so fast. We need to add a debounce to the reset switch to fix this.
So this program is not developed any further but it is kept on file for an important reason. In
technology education a record of trialling is essential to developing clear problem solving and leads to
good grades.

start

Alarm Unit

Algorithm:
Initially the two LEDs are off

When SetSw is pressed
the program must monitor TriggerSw
and the SetLED comes on

If TriggerSw is detected AlarmLED flashes
If SetSw is pressed the AlarmLED stops

Issue:
When TriggerSw is released AlarmLed stops flashing
and there is no indication that the alarm occurred

Set_LEDSet_Sw

Alarm_LED

Alarm_LED off

Set_LED off

N SET_switch=0
Y

Set_LED on

 Trigger_Sw = 0 Y
N

Toggle Alarm_LED
waitalittle

N Set_Sw = 0
Y

Trigger_Sw

Do

Do

Do

Loop Until

Loop Until

Loop

If
Then

End If

212

15.8 Alarm 6 algorithm:

 Initially the two LEDs are off

 When Set_Sw is pressed and released A

 the program begins to monitor Trigger_Sw

 and the Set_LED comes on

 If Trigger_Sw is detected Alarm_LED flashes

 If Trigger_Sw is reset Alarm_LED keeps flashing

 If Set_Sw is pressed and released (D) the
Alarm_LED stops

NOTE: at point B there is no debounce, this is because we
want the program to continue to sense the switch is
pressed at point C and then wait for it to be released.

Now this is a complex piece of code and really we have
gone justabout as far as we should with flowcharts. Later in
the book there is another concept called state macines
which is much easier for laregr programs!
'file: ALARM_6.BAS

'compiler setups

$regfile = "attiny26.dat"

$crystal = 1000000

'--------------------------------------

'Hardware setups

Config Porta = Output

Config Pina.0 = Input

Config Pina.1 = Input

'-------------------------------------

'Hardware Aliases

Trigger_sw Alias Pina.0 'my white switch

Set_sw Alias Pina.1 'my green switch

Alarm_led Alias Porta.3

Set_led Alias Porta.4

Piezo Alias Porta.6

'use useful name PIEZO not PORTb.3

'-------------------------------------

'Variables

Dim Count As Byte

Dim Cyclecount As Word

'keep count of number of cycles

'-----------------------------------

'Constants

Const Flashdelay = 50

Const Debouncedelay = 30

Const Halfperioddelay1 = 200 '

first tone 1/2 period

Const Halfperioddelay2 = 500 '

second tone 1/2 period

Const Maxcyclecount1 = 350

'length of first tone

Const Maxcyclecount2 = 150

'length of second tone

'--

'program starts here

Do

213

 'turn off both LEDs

 Reset Alarm_led

 Reset Set_led

 'wait for set switch to be pressed and released

 Do

 Loop Until Set_sw = 0

 Waitms Debouncedelay

 Do

 Loop Until Set_sw = 1

 Waitms Debouncedelay

 Set Set_led

 'wait for set switch to be unset and check for alarm at same time

 Do

 If Trigger_sw = 0 Then 'sound alarm

 For Count = 1 To 10

 Gosub Siren_sound

 'flash the led rapidly

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

 Incr Count

 Next

 'flash the led until alarm is unset

 Do

 Set Alarm_led

 Waitms 20

 Reset Alarm_led

 Waitms 200

 Loop Until Set_sw = 0

 End If

 Loop Until Set_sw = 0 'debounce set switch

 Waitms Debouncedelay

 Do

 Loop Until Set_sw = 1

 Waitms Debouncedelay

Loop

End

214

16 Basic electronic theory

16.1 Conventional Current

Before the electron was discovered it was thought that the movement of charge was from positive to
negative. It is common when current is being discussed for conventional current to be meant, that is
current will be from positive to negative. If we want to make the difference clear we will say
conventional current (positive to negative) or electron current flow (negative to positive)

16.2 Ground

In a circuit we need a reference point for all the voltage measurements, we often
refer to this point as ground. At the ground point in the circuit the voltage
potential is zero. In a battery powered circuit the negative side of the battery is
often referred to as ground. These are the symbols you will see for a ground

connection.

16.3 Preferred resistor values

Not every resistor value is made, there are ranges called the E series (Exponent?) This is useful
because then not all values have to be held in stock by a company for manufacturing purposes.

E6 series E12 series E24 series

1.0 1.0 1.0

 1.1

 1.2 1.2

 1.3

1.5 1.5 1.5

 1.6

 1.8 1.8

 2.0

2.2 2.2 2.2

 2.4

 2.7 2.7

 3.0

3.3 3.3 3.3

 3.6

 3.9 3.9

 4.3

4.7 4.7 4.7

 5.1

 5.6 5.6

 6.2

6.8 6.8 6.8

 7.5

 8.2 8.2

 9.1

In the E6 series there are 6 values per decade, so the following values are made:
0.1, 0.15, 0.22, 0.33, 0.47, 0.68
1,1.5, 2.2, 3.3, 4.7, 6.8.
10, 15, 22, 33, 47, 68,
100, 150, 220, 330, 470, 680,
1000, 1500, 2200, 3300, 4700, 6800, and so on

215

16.4 Resistor Tolerances

Resistors are not perfect values they are made by machine and therefore have a NOMINAL value
which is correct to a reasonable accuracy. Usually we buy 1% resistors for the workshop so they are
guaranteed to be close in value.

Calculate these tolerances:

Nominal Value Tolerance Min value Max value

390R 1% 390 - 1% = 390 - 3.9 = 386.1R 390 + 1% = 390 + 3.9 = 393.9 R

1K

4k7

10K

33K

16.5 Combining resistors in series

Sometimes it is necessary to put resistors in series to get the value we need.
In circuit diagrams we use names for components such as R1, R2, R3, R4 and Rt means the total

resistance. (Wherever you see ohms you can replace it with the symbol Ω in your work)

1.

R1= 100R
R2=300R

Rt =

2.

R1= 10k
R2=30k

Rt =

3.

R1= 1k8
R2=10k

Rt =

4.

R1 = 4k7
R2 = 1K8
R3 = 9K2

Rt =
Rt =
Rt =

5.

R1 = 2M6
R2 = 110K
R3 = 330K

Rt =
Rt =
Rt =

6.

R1 = 1M8
R2 = 720K
R3 = 390K
R4 = 180K

Rt =

216

16.6 Combining resistors in parallel

When two resistors are put in parallel the current has 2 paths it can take.

 The current will split between the two resistors, the current in
each split will be related to the values of each resistor.
The overall effect is the same as if a smaller value of
resistance was used.

The formula for calculating the total resistance is:

1/Rt = 1/R1 + 1/R2 or

Rt = 1 / (1/R1 + 1/R2)

On a calculator this can be entered directly using the inverse function the 1/x button.
 Enter value of R1
 press 1/x
press +
enter value of R2
press 1/x

press =
 press 1/x

1.

R1 = 100
R2 = 400

Rt =

2.

R1 = 1K
R2 = 2K2

Rt =
Rt =
Rt =

3.

R1 = 2K2
R2 = 3K3
R3 = 2K
R4 = 4K7

Rt =

4.

You need 180R, you have the following resistors choose 2 in parallel that
would give the value closest to the desired value:

360R, 4k7, 680R 2k2

217

16.7 Resistor Combination Circuits

When solving these circuits you have to look for the least complicated thing to solve first.
This can be thought of as which resistors are in a very simple combination, one that I could replace
with a single resistor and not affect the current flow and voltage in another part of the circuit (its not
easy and takes a lot of understanding to be able to do this, the yellow colours are hints to help with
the first few)

1. R2 and R3 can be replaced by a single
resistor that would not affect the current
through or voltage across R1

R1 = 10k
R2 = 2k
R3 = 3k

Rt=

2. R1 and R3 can be replaced.

R1 = 4k7
R2 = 8k2
R3 = 1k5

Rt=

3.

R1 = 16k
R2 = 12k

R3 = 18k
R4 = 15k

Rt=

4.

R1 = 1k1
R2 = 1k5
R3 = 470R
R4 = 680R

Rt=

5.

R1 = 4k7
R2 = 1k8
R3 = 33R
R4 = 560R
R5 = 330R

Rt=

218

16.8 Multimeters

To understand how circuits function and to find faults with them when they are not working it is
necessary to know how to use a multimeter.

There is a rotary switch to select the correct measurement scale.

If you are measuring voltage in a circuit with a 9V battery you would put the meter scale onto 20V

. As the range gets closer to the actual value the accuracy gets better.

219

16.9 Multimeter controls

This multimeter is a common type.

The display has ______ digits. It can display numbers
from 0.00 to 1999.

There are ________ different positions on the rotary
switch.

V is for ______ and the ranges are

A is for ______ and the ranges are

The ohms scale has an ______ symbol.

Its ranges are ____________________

There are 3 different sockets for the probes to plug into
these are labelled

The hFE selection is for testing ___________________________

COM stands for ___________ and the black/red probe goes into it.

The black/red probe goes into one of the other sockets.

What is the power source for the meter itself? ________________________

220

16.10 Choosing correct meter settings

Selecting the switch position is very important to making accurate measurements.
Know what you want to measure voltage, current or resistance.

The second step is selecting the range of the measurement. If an approximate value is known then choose the
next higher setting on the range switch. Generally we use 9 volt batteries in our circuits, if you want to
measure voltages around a 9 volt circuit then what range would you choose for the meter? ________

If you did not know the voltage in the circuit which range would you
choose? __________

Many of the resistors we use are 5 band, very small size and hard to
read. What range would be best to choose first on the
meter? ___________

What range would you choose to measure a resistor you thought was
91Kohms.________

What range would you choose to measure a resistor with colours red,
red, orange, brown? ____________

What is the highest resistance value that can be read on the meter? ________

What is the lowest resistance that could be measured on the meter? ________

When measuring current where would you put the probes and what range would you choose to start with?
__

If no current readings are being shown on the meter it is possible that
the ______________________________.

When making a measurement and its value is greater than the scale used the display shows

221

16.11 Ohms law

This a very important formula in electronics. You must be able to use it
correctly and develop a comprehensive understanding of its meaning.

In a circuit one volt will drive one ampere of current through a one ohm
resistor (or when one amp is flowing in a one ohm resistor one volt will be
developed across the resistor)

The formula is Voltage = Current times Resistance or V = I x R

If 0.5A is flowing through a 10 ohm resistor then what is the voltage across the resistor?

Answer: V=I*R, V=0.5*10, V=5Volts.

If the voltage is 10volts and the resistance is 2ohms then what current through the circuit?

 Answer:I=V/R, I=10/2, I=5A.

At 9V, if 0.0019A is flowing through the circuit what is the value of R?

Answer: R=V/I, R=9/0.0019, R=4,700 ohms

1. I= 0.002A, V= 16V R =V/I, R=16/0.002, R=8000 ohms

2. V= 12V, I= 0.015A R =

3. V= 9V, I= 2A R =

4. I= 0.0001A, V= 5V R =

5. R= 2000, V= 6V I =

6. V= 50V, R= 10,000 I =

7. V= 3V, R= 100,000 I =

8. R= 47,000, V= 20V I =

9. I= 0.00183A, R= 12000 ohms V =

10. I= 0.0015, R= 1000 ohms V =

11. R= 20R, I= 0.2 V =

12. I= 0.4, R= 120R V =

222

16.12 Voltage & Current Measurements

16.12.1 Measuring Voltage

 Calculate the voltage across each resistor
 Circuit current first.
 I = V/R =____________
 V(1k1) = IxR = ___________________
 V(150R) = IxR = _________________
 Setup the multimeter correctly and measure the voltages in
this circuit.
 What was the voltage measured across the 1k1
________across the 150R _______________

16.12.2 Measuring Current

To measure current in a circuit the circuit must be broken and the meter inserted into it.

 Calculate the current through each resistor.
 IA = V/RA; IA = _______________________
 IB = V/RB; IB = _______________________
 IC = V/RC; IC = _______________________
 Measured Values
 IA = ______________,
 IB = ______________,
 IC = ______________

There are at least two reasons for differences between calculated and measured
values in this circuit what could they be?

16.12.3 Meter Safety

 The meter is a delicate instrument handle it with care.
 Estimate what your measuring first and set the meter range to a larger value(or even to the maximum

value),
 Do not measure resistance in a circuit when the circuit is on.
 Check the internal fuse is correct before measuring current.
 Turn the meter off after use.

16.12.4 Circuit Safety

 Using the meter on a current setting when wanting to measure voltage can easily damage components
and even the circuit board.

 Take care not to short parts of the circuit with the probes.

16.12.5 Battery Life

 Switch the meter off when finished using it.

223

16.14 Continuity
One range on the meter will beep when the probes are shorted together, or a very low value of resistor is
connected. It is very useful for
 checking cables are not broken

 checking that tracks between parts of a PCB are not broken
 checking that tracks are not shorted together on a PCB

Find 6 items that are good conductors

 __________________ __________________ __________________

 __________________ __________________ __________________

and 6 items that are poor conductors

__________________ __________________ __________________

 __________________ __________________ __________________

16.14.1 In-circuit measurements

When a resistor is unknown or suspected faulty its resistance can be measured using the multimeter
on ohms range. When measuring resistors "in circuit" you must disconnect the power. To measure
resistance the meter puts current through the resistor and measures the voltage across it so current
from within the circuit will confuse the readings and the meter or the circuit could be damaged.

Measure the resistors in the following circuits.

Can you explain your readings for the second circuit.

all three resistors are measured at once so the meter reads
only the parallel combined resistance

224

16.15 Variable Resistors

Variable resistors or potentiometers, are used to change the input to an electronic circuit.

They come in different shapes, sizes and values as well ‘dual-gang’ (what use is a dual one?)

Some are designed to be varied by the user of the circuit, and are fitted with knobs to turn them, such as those
used as volume controls.

Others are called trimpots and are meant to be varied only by service people when working
on the inside of equipment, these are turned with a screwdriver.

Most pots vary over 270 degrees not the full 360 degrees.

The resistance between the two outer terminals does not change, only the resistance
between the centre terminal and both the outer terminals.

For this 10k pot, fill in the missing values from the table

angle 0 to centre
centre to

10k

0 0 R 10,000 R

30 1,000 R

108 4,000 R

 5,000 R 5,000 R

190 7,000 R

 1,000

270 10,000 R 0 R

If a lever was attached to the control of a pot what sort of things could be sensed by the circuit?

225

16.16 Capacitors

A capacitor is made from 2 conductors separated by an
insulator. Electrons do not flow through a capacitor, they flow onto
one plate causing electrons to flow away from the other plate. Once
the capacitor is full no more electrons can flow. A capacitors action is
to store charges.

16.17 Capacitor Codes and Values

Capacitors not only come in a variety of packages and types but there are also a number of different
ways that their values can be printed onto them. Some values are in uF, some in nF and some in pF,
and it can be confusing until you learn the few simple rules.

1. learn the prefixes first, micro uF, nano nF, and pico pF micro is the biggest, nano in the middle and pico the
smallest and learn how to convert between them.

2. Look at the capacitor to see what is written on it. If it has 10uF or 22n the it is obvious what value it is.

However when it is written with 3 digits such as 333, then it will be in pF even though it it not stated, and the
last digit will be the number of zeros (a bit like resistor colour codes) so 333 means 33,000 pF.

Convert the following

333 = 33,000pF 33 = 33pF

330 = 330pF 685 =

221 = 220 =

470 = 68 =

474 = 276 =

16.18 Converting Capacitor Values uF, nF , pF

 farads micro nano pico

 units u n p

 1

 1 0 0 0

 1 0 0 0 0 0 0

 1uF = 1,000nF = 1,000,000pF

 0 1

 1 0 0

 1 0 0 0 0 0

 0.1uf = 100nF = 100,000pF

10nf to pf A

82nF to uF B

2200pf to nF C

100,000nF to uF D

370pF to nF E

226

16.19 Capacitor action in DC circuits

In this circuit when the switch is in the upper position the
capacitor will store the charges on its plates; when moved to the
lower position the stored charges will be released back to ground
through the LED and resistor. The higher the value of the
capacitor and the lower the value of the resistor the longer the
capacitor will take to discharge and the longer the LED will glow.
The value of capacitance is the amount of charge that can be
stored; it is related to the size of the plates and the thinness of
the insulator. A Capacitor is fully charged when the voltage
across it equals the supply voltage.

This ability to store charge is absolutely crucial in circuits that need quality power. In a computer
circuit that switches signals at megahertz or gigahertz a lot of power can be required for tiny periods
of time e.g. 1 nanoseconds (0.000000001 second).
If there is no capacitor close to the IC, it pulls the extra charges it needs from the power supply wires

close to the chip, this
appears as rapid changes
in voltage level or ‘spikes’
in the voltage, these
spikes transfer along the
power lines on a pcb and
upset nearby ICs as well.

A common practice in
electronics is to have a
0.1uF cap next to the
power pins of every IC
to minimise this effect.

Another common
practice nowadays is
to have large areas of
copper on the circuit
board connected to
ground (0V). This acts
as a large store of
charges.
Many circuit boards

have multiple layers of copper tracks inside the board, one of which is ground and another of which
may be the power (e.g. 5V).

227

16.20 The Voltage Divider

The voltage divider is is one of the most important circuits in electronics. It is used extensively in
input circuits. To understand its operation you must know about ohms law.

Below is a 2 resistor voltage divider circuit. The output voltage is the voltage across R2,
Step 1. Voltage and total resistance are known, so I = Vin/Rt
Step 2: R2 and Current through R2 are known, so Vout = I*R2

With 9 volts across both resistors then:

I = Vin/Rt
I = 9/(4000 + 5000)
I = 9/9000
I = 0.001A

across the 5k resistor
Vout = I*R2
Vout = 0.001*5000
Vout = 5V

Work out the solution to the following.

R2 = 1K

I= Vin/Rt

I = 9/ (4000+ ________)

I = ___________

Vout = I * R2

Vout = ________ * 1000

Vout =

R2 = 8K

I= Vin/Rt

I = _____________________

I = ___________

Vout = I * R2

Vout = ________ * 1000

Vout =

R2 = 4K

I=

I =

I =

Vout=

Vout =

Vout =

228

16.21 Using semiconductors

Semiconductors are the group of electronic components responsible for everything smart that
electronic circuits do. Made mostly from the semiconductor silicon, which is itself a very poor
conductor, they take on fantastic features when mixed with other material.

Since the first
transistor was

developed in 1947
they have come a

long way.

They now come in
all shapes and

sizes. from
miniature surface

mount packages to
large high power

packages.

They amplify,
switch, and control
every conceivable

process

all over the world

229

16.22 Calculating current limit resistors for an LED

In the amplifier circuit there is an LED to indicate that power is on.
The resistor in series with the LED functions to limit the current through the LED.

 AN LED requires a small forward voltage e.g. _____V across it to operate, however the circuit
is powered by a 9V battery. The rest of the battery voltage must be dropped across the
resistor.

 Ohms law will assist with this calculation.

 The resistor will have 9V - ____V = ____V across it.

 An led draws about _____mA of current, this current goes through the resistor so

 the resistor will need to be R = V/ I = ______ / ______ = ______ ohms.

 Choose the closest value from the available values of resistors.

If two LEDS were placed in series what value of resistor would be required?

230

16.23 The Bipolar Junction Transistor

There are thousands (millions?) of different types of transistors made by different manufacturers all
over the world, and they come in all shapes and sizes. The correct name for the usual transistor is
the BJT or Bipolar Junction Transistor. We could have used a BC547 instead of the 2N7000 FET for
the darkness detector.

Transistors are semiconductor devices with three leads: an emitter, a base and a
collector.

The BC547 transistor is just one of the many different types of BJT transistor. The
BC547 is an NPN transistor, there are also PNP transistors the BC557 is an
equivalent PNP transistor .

Transistors are amplifiers, a small voltage across the base-emitter junction (the small arrow in the
transistor symbol) will control the current (the large arrow) from the emitter through to the collector.

The small voltage across the base is called Vbe , the current through
the base caused by this voltage is called Ib. And the current through
the collector is called Ic.

Small variations in the base voltage Vbe can create large changes
in the collector current Ic.

The voltage required across the base of the transistor (Vbe) is normally
around 0.6V to 0.7V when it is fully conducting.

231

16.24 Transistor Specifications Assignment

Transistors have current gain (hFE), this is the ratio of base current (Ib) to collector current (Ic). If Ib is
2mA and Ice is 100mA then the gain is said to be 100/2 = 50.

Transistors have limits to the voltages and currents applied to them in circuits. They should not be
exceeded. If the voltages across the base or collector are too high then the transistor will most likely
blow up internally; if you try to draw too much current from the collector then it will most likely
overheat and burn up

Look up the specifications for the following transistors in a catalogue

 BC547 BC557 BC337 BC327 BD139 BD140 TIP41C TIP42C 2N3055

Type NPN

Case T092

IC (mA) 100 mA

Vce MAX 45 V

 hFE (gain) 110-800

 PTOT (power) 500 mW

16.25 Transistor Case styles

T0_________

T0_________

T0_________

T0_________

16.26 Transistor amplifier in a
microcontroller circuit

We often use a NPN transistor in our circuits so that the
microcontroller can control low to medium power devices
such as small motors or lots of LEDs

232

16.27 Transistor Audio Amplifier

Audio signals are not DC like that in a microcontroller circuit they are alternating current (AC) signals.
AC is measured in frequency (number of cycles per second) and amplitude (size).

Audio signals such as voices are not single waves but complex waves of many frequencies each of
differing amplitude as in the picture below.

When amplifying audio through a transistor amplifier
the frequency should not change but the amplitude will.
(In a single transitor circuit the signal is inverted, but
that doesn’t really make any difference to what we
hear)

This transistor circuit
is setup to amplify
small audio signals (it
is not a very high
gain/amplification
circuit)
A lot of components
are required to control
the transistor circuit so
that it doesn’t distort
the audio signal.

233

16.28 Speakers

Sound is vibrations of air particles; a speaker will change the audio signal from an amplifier by moving
the cone of the speaker rapidly back and forth vibrating the surrounding air.

Speakers come in various types each with specific frequency ranges they can reproduce: subwoofers
(very low frequencies), woofers (low frequencies), mid-range speakers (middle frequencies), and
tweeters (high frequencies).

Speakers have a resistance and typical values are
4 or 8 ohms. They also have a power rating e.g.
100W, 20W or o.25W.

If you connect a speaker directly to a battery you
will destroy it (no smoke or explosion just a dead
speaker).

234

16.29 Switch types and symbols

Symbol Switch description Example Example name

SPST Switch
Single pole single

throw

Toggle switch

Mecury Switch

Rocker switch

push to make

Push Button
Switch

push to break

Push Button
Switch

DPST switch
Double pole single

throw

Rocker switch

SPDT switch
Single pole double

throw

Toggle switch
Or Microswitch

DPDT Switch
Double pole double

throw

Toggle Switch
or slide switch

4 way (or more)

Rotary Switch

235

17 Basic project planning
The development of a technology project requires much more than the making of a working prototype, it requires students to undertake a full
development process of planning, design, client and stakeholder liaison along with much modification to develop the prototype that meets a clients’
needs.

A great number of tools are available for use when planning and executing the development of a project, such as:

 action plans

 Gantt or PERT charts

 timelines

 goal/target setting

 keeping a journal

 publishing a website

 stakeholder surveys and questionnaires

 emails

 spreadsheets

 mind maps

 presentation software

 drawing software

 surveymonkey

 CAD and PCB design software

 Block Diagrams

 Schematics and Layout

Many planning tools can be found at
www.mind-tools.com or www.visual-literacy.org

As you go thorugh the various stages of developing a project, your effective selection, review and use of these tools will count towards your
grades.

http://www.mind-tools.com/
http://www.visual-literacy.org/

236

17.1 System Designer

System Designer software was developed to help students both design and manage their project; it contains various different types of drawings that
will be used during development of a prototype

237

17.1.1 Creating a new project.

It is essential that each project is saved into its own folder, as a unique file for each diagram within System Designer is created.

Use the toolbar along the top to create various diagrams.

The process you go through may vary but here is a guide to follow initially:

1. First create a Mind map for the project
a. This diagram will help you to think about the different stages required when developing your project.
b. Initially there may not be much in the diagram as the planning cannot really be undertaken fully until after the system is designed

2. Then develop a System Context Diagram
a. This diagram shows your system from the outside, all of the internal workings of it are hidden. This will take several iterations (cycles

of development)
b. Keep different diagrams for the different stages and changes you go through

3. Next create a Timeline – go back and modify the mind map diagram (and use the auto create timeline function)
a. In this diagram you can begin to plan the processes and resources required to develop the prototype.

4. Next create a System Block Diagram
a. In this diagram you can visualize the internal subsystems within the device.-This will also be an iterative process so keep different

drawings for different options
5. A Board Layout can be created next

a. A board layout can be used to plan the layout of components onto breadboard, Veroboard and selected development boards.
b. Note that a board layout will not be required if a PCB was designed specifically for the project

6. Add an Algorithm
a. An Algorithm is a written explanation or set of instructions that describe the functions the microcontroller program will carry out.

7. Flowcharts/Subroutine diagrams
a. Smaller systems can be designed using a Flowchart and as many subroutines as required.

8. State machines
a. Larger systems will need a State Machine Diagram and possibly some subroutines
b. A state machine is a very common diagram used in designing software for embedded systems

238

17.1.2 Toolbars

The toolbars in each diagram contain tools to add specific components to each diagram.
Some components are the same in each diagram though

17.1.3 Context Menus

Many features of diagrams are accessed through right clicking on the components, links and backgrounds of each diagram

239

17.1.4 Selecting items to copy them

Press the ctrl key and click and drag over portions of the diagram to select it. Then right click on the selection to decide whether to copy them to the
clipboard, so they can be pasted into another diagram, or copy as an image to the clipboard so they can be copied into another program.

17.1.5 Pan diagrams

Press the mouse wheel button to select the diagram to move (pan) it around.

17.1.6 .Zoom diagrams

Use the mouse wheel or the buttons on the toolbar

240

17.2 Project mind map

This diagram is a simple brainstorm of the milestones (major stages) required to develop a project from an issue right through to a working
prototype. Students can develop their own diagram or use the example project milestones (and modify them)

Colours and other details can be changed by right clicking on the milestone or background.

241

17.2.1 Milestone duration

At each milestone if the number of weeks is added in brackets it can be copied thru to the timeline
Values include part weeks e.g. (0.3).

17.2.2 Automatic timeline creation

Once the milestone stages have been decided upon a timeline can be automatically created using the milestone colours and weeks values from the
mind map.

The form that opens will automatically start from the beginning of the current year.

242

17.3 Project timeline

In the timeline diagram milestones can be drawn (if not already created automatically from the mind map). Double clicking on a milestone allows it
to be edited.

243

17.3.1 Milestone Planning

A milestone is made up of several planning steps as well a review of progress ad reflection at the end of it.
The following information is required by the planning standard: actions, resources, expertise, equipment, research, and budget.
Take time to complete these as thoroughly as possible.
The tables can be resized and moved around the diagram to create a better layout for exporting.

17.3.2 Stakeholder Consultations

It is important to identify the points in your project where different stakeholders will have to be consulted.
As well as the information required from them.

17.3.3 Critical review points

Each milestone in the project will have critical points associated with it that will need to be overcome so that they don’t stop you from reaching the
next stage and subsequently the final goal of finishing your project. You need to identify these and comment on them.

17.3.4 Copying Timelines to put them into your journal

To export a timeline to another document such as Word etc, first resize and move the tables around the diagram and also change the zoom level to
obtain the view wanted.
The visible portion of the diagram can be copied to the clipboard for pasting into a word or other document, using the button on the toolbar.

244

17.4 System context diagram

Although you are developing a prototype (product/outcome), you need to see it as both a system and a subsystem (smaller component of a larger
system) with all the associated inputs and outputs.

The system context diagram is to recognize that your prototype is a subsystem within its larger context/environment.
A context diagram shows how your prototype interacts with users (called ‘actors’ in the programming industry) and its immediate environment.
No detail about the inner workings of the prototype is required. Think of the prototype as a 'black box'; all we know about it are its inputs, outputs
and attributes (physical characteristics, functions, qualities and features)
A system context diagram is also an essential tool in writing an initial brief as it helps to document stakeholder requirements

As well as this, the system context diagram will provide evidence for the following standards: modeling, systems, brief writing, planning, and
prototyping.

17.4.1 First step is to create a main system device

245

17.4.2 Add attributes to the device

Use the rectangle and circular buttons on the toolbar to add physical attributes to the device (right click on an attribute to change its shape)
Give the device and all its attributes useful names.

246

17.4.3 External sensors and actuators

Add any external environmental sensors or actuator outputs, (these are things not contained within the device itself, note that the devices are not
hardware specific names like ‘LM35’ but ‘water temperature sensor’. These are useful for stakeholder consultations and identify the information the
sensor gives.

247

17.4.4 User interactions with the system (social environment)

Add a normal user - how will this user interact with the prototype (input things into it and be alerted by it).
Some systems have different categories or levels of users (normal and special e.g. cellphone have normal users and technicians which have
access to extra features).

248

17.4.5 Physical Environment

Each product exists within with a physical world that forces certain things upon it, e.g. cellphones are kept in the pockets of clothes, what influence
does this have on their design; also the cellphone must not have a negative effect on the clothing it is kept in. In the bathtub controller the device
will be inside but near water.

249

17.4.6 Clients and stakeholders

Add stakeholders to the diagram, at this stage you can discuss the diagram with the client and other stakeholders to make sure that their needs
have been fully documented.

If you change the design after speaking with the stakeholders keep a record of the old design or even start a new system context diagram within
your project.
The reason for keeping ongoing changes will be to show you iterative (ongoing) planning and proof of stakeholder consultation.

250

17.4.7 Conceptual statement and physical attributes

1. Write a conceptual statement, 3 sentences is usually enough

a. Why is the device to be created?
b. What is it?
c. Why do it?

2. Describe the physical attributes (characteristics and features) of the system, the function of the system (functional attributes) need not be
described here as they will be thoroughly covered in later drawings.

251

17.4.8 Secondary system devices

If the system includes external devices you have to develop as well then add another system device.

Take note that the communication between these two devices in this system is in one direction only. In some systems it will be bidirectional.

252

17.4.9 External system connections

Some systems interact with external systems such as if the bath tub controller was to send a signal to the home alarm system.

253

In this system context diagram a fish tank controller is linked to the internet.

254

17.4.10 Export diagram to written documentation

Once the diagram is completed it can be checked with stakeholders for its accuracy, and then a written version of it can be produced by clicking on
the ‘Written brief’ button in the toolbar.
This text document can then be expanded to include more detail

255

17.5 Block Diagram

In this diagram you need to develop the design of your product as a system itself.
A block diagram allows you to plan where interfaces will be connected before you do the connection, allowing changes to be made.

A system block diagram reveals the inner secrets of your prototype, using blocks to represent subsystems within the device.

Note that some specific detail is hidden and will be found in a schematic (circuit diagram).

Start by adding the microcontroller you are using and right click on it to edit part numbers etc.

256

Then add things that it might have, an LCD, buttons, piezo, LEDs.
Use the rectangle and circular buttons and other shapes to add to the device.
Make sure that links between the micro and inputs/outputs are made in the right direction either coming in to the micro or out of it.

Blocks are used to represent parts of the circuit, so an LED subsystem is created by just adding a circle and calling it red led.
You do not show the current limit resistor, detail for that will be in the schematic.

Sometimes it may be a good idea to have two separate block diagrams, one for I/O (input and output) devices and a second for the power supply (it
just makes it easier to separate the two parts of your design).

On the right hand side of the diagram are tables that list the outputs, inputs and variables that are created. These will be modified in later diagrams.
The detail about port connections is useful in developing the setup program code for your program. By clicking on the Basic Code button in the
toolbar the program code to form the setup area in your program will be automatically generated.

257

17.6 Board Layouts

If you will be using breadboard or an existing development board then completing a board layout drawing will be a useful planning tool.
(also If a schematic and PCB have been developed using a program such as Eagle then a board layout may be useful as you can create your own
background using your layout from eagle and add I/O devices to it yourself)
Planning your layout before you start soldering is a really good use of time; it’s a lot easier to change the diagram than your physical board!!

258

17.6.1 Backgrounds

Start by selecting the background image for the drawing.

259

17.6.2 Add Components

Components can be added by clicking on them in the toolbar, then right clicking on them will allow you to change features.

260

17.6.3 Add your own pictures to the layout

Here a servo has been added to the layout and the 3 pin header for it to connect to

261

17.6.4 Create your own backgrounds and components

The software is flexible enough for you to add your own backgrounds automatically.
Open the installation folder and find the folder named layout images

1. The images can only be of type .gif
2. There can be no spaces in the file names
3. Each category must have its own icon e.g. Background_icon.gif

a. The naming must be with an underscore between the category name and the word icon
4. Each image must start with the same category name e.g. Background_SmallVeroboard.gif

a. The name must be capitalized the same background is NOT the same as Background
b. Again no spaces and the underscore separates the category from the image name

5. If a component is to have a text value it can be added to the component name with another
underscore

a. Capacitor_Electrolytic_10uF.gif
6. If you create a component type but forget to create the icon then it will not appear
7. If a component doesn’t appear then check your spelling!
8. Have fun

262

17.7 Algorithm design

Algorithms are well defined instructions for getting the microcontroller to do something.
Pseudo-code is when an algorithm is written down using 'sort-of' program code commands.
Algorithms can also be designed using diagrams such as flowcharts or state machines as well as several others.

Why write an algorithm (either using pseudo-code or flowcharts)?
Because it helps you solve the problem and you need to do this before you start programming;
If you can solve the problem on pen and paper with an algorithm then you can write a program that will solve the problem.

Stage 1: determine the initial states of each output device.(right click on the row you want to moidify in the outputs table)
• e.g. will LEDS be on or off when the power is turned on
• what will a display show
• will a pump, motor or relay be on or off

Stage2: Data storage (cariables) – you need to specify these at this stage, before you start programming
• As well as reading inputs and controlling outputs your programs use, create and change data.
• What data will your program be processing?
• The data is stored inside the microcontrollers RAM (memory).
• A variable is the name given to a location in RAM.
• e.g. dim X_position as byte.
• This means dimension (allocate or set aside) 1 byte of ram and in the program and from now on the location can be called X_position

To make the use of ram as efficient as possible different variable types exist.
BIT (uses 1 bit of memory - values are either 1 or 0)
BYTE (uses 1 byte of memory - values can be any whole number from 0 to 255)
WORD (uses 2 bytes of memory - values can be any whole number from 0 to 65535)
INTEGER (uses 2 bytes of memory - values can be any whole number from -32,768 to +32,767)
LONG (uses 4 bytes of memory - values can be any whole number from -2,147,483,648 to +2,147,483,647)
SINGLE (uses 4 bytes of memory - values can be positive and negative fractions as small as 1.5x10^-48 up to 3.4x10^38
DOUBLE (uses 8 bytes of memory - values can be positive and negative fractions as small as 5.0x10^-324 up to 1.7x10^308)

STRING (uses ascii code to represent letters and digits, 1 character takes up one byte of ram)
e.g. dim my_name as string * 10 can store up to 10 characters only!
the largest string you can have is 254 characters

263

When choosing a variable to store data think about the right type to use (so as not to waste memory). But make sure you choose one that gives you
what you need. Does your variable need to store both positive and negative numbers? Whole or fractional numbers? Big or small?
Variable names cannot have spaces, must start with a letter, can contain digits but not symbols.
• Examples
 Temperature range is from 3 to 40 degrees - Dim outside_temperature as byte (is within the range 0 to 255)
 Temperature range is from -30 to 12 – Dim freezer_tempr as integer (needs to store negative numbers)
 Angle to move is from 0 to 360 – Dim move_angle as word (positive whole number from 0 t 65,535)
 Calculate the difference in milliseconds between 2 dates – Dim millsecs_diff as long
 Dividing numbers requires decimals, Dim percent_of _day as single

Stage3: Decomposition
• Break up your problem into small solvable chunks
• The conceptual chunks should separate between: reading sensors, storing data, retrieving data, doing calculations, repeating actions and
driving outputs, such as:

o Read the temperature (input)
o Close the door (output)
o Keep the last 2 temperature readings (data storage)
o Read the humidity (input)
o Move the arm up (output)
o Keep the last 2 humidity readings (data storage)
o Read the distance from the infrared sensor (input)
o Find out if we need to open or close the vent
o If the second temperature readings minus than the first is > 2 then open the vent (calculation)
o Find out how long to turn the fan on for (calculation)
o Open the window (output)
o Display the time (output)
o Tilt the deck (output)

• In each calculation add some maths or logic about what your program will do using the IF, DO, WHILE, AND, OR, NOT
o IF the blue switch is pressed AND NOT the red switch THEN make the led flash (logic)
o IF the blue switch is pressed AND the end is NOT reached THEN X_position = X_position + 4 (calculation and logic)

• Repetition
o DO increase X_position UNTIL end is reached (uses calculation)
o WHILE the temperature > 5 flash the led (uses calculation)

264

17.8 Flowcharts

System Designer software includes a flowcharting feature which can be used to graphically explore programming concepts.

265

17.8.1 Drag and drop flowchart blocks

266

17.8.2 Beginning template

A new flowchart file starts with a template that is the minimum needed for a microcontroller program to function.

The first block sets up the Bascom Compiler to recognise your specific micro e.g.
$crystal =
$regfile =
As well as your specific hardware e.g.
Config Port...
And then variables your program will use to store data e.g.
Dim car_count as byte

A blank program can be generated by system designer, it looks like this:
' Project Name: Dice

 ' created by:

 ' block diagram name: BD_1

' Date:9/16/2011 10:51:15 AM

' Code autogenerated by System Designer from www.techideas.co.nz

'***

'Compiler Setup

$crystal = 1000000

$regfile = "attiny461.dat"

'***

'Hardware Configs

Config PORTA = Output

Config PORTB = Output

Config PINB.6 = Input 'red_sw

'***

'Hardware aliases

'inputs

red_sw Alias PINB.6

'outputs

LED1 Alias PORTA.0

LED2 Alias PORTA.1

LED3 Alias PORTA.2

LED4 Alias PORTA.3

LED7 Alias PORTA.6

LED5 Alias PORTA.4

LED6 Alias PORTA.5

'***

''------Program starts here --------

Do

Loop

'END

267

18 Example system design - hot glue gun timer

18.1 System context diagram

268

18.2 Hot glue gun timer block diagram

This reveals detail about the inner physical attributes or characteristics of your product, note it is not a full circuit or schematic diagram, but is still in
some conceptual form. Make sure links between I/O devices and the microcontroller go inthe right direction.

269

18.3 Hot glue gun timer algorithm

Here the functional attributes (characteristics and features) of the product are revealed.
1. Start by identifying the initial states of any outputs – on or off in this situation
2. Describe the algorithm – how the device responds to user input and computations it must carry out.
3. At the same time begin to identify any data the program will need and give these variables useful names.

270

18.4 Hot glue gun timer flowchart

A flowchart is a visual algorithm for a simple system

Intepreting the algorithm:

Initially:
OFF_LED = on
ON_LED = off
GLUE_GUN = off

Wait until START_BTN is pressed

OFF_LED = off
ON_LED = on
GLUE_GUN = on

Zero the counter

Wait 10 ms
Increase counter by 10

Check the switches

-If start pressed reset count to 0 to restart the timing for
another hour

-If stop pressed set count to max so looping stops

Repeat until the time has reached 1 hour

271

18.5 Hot glue gun timer program
' GlueGunTimerVer1.bas
' B.Collis 1 Aug 2008
' 1 hour glue gun timer program
' the timer restarts if the start button is pressed again
' the timer can be stopped before timing out with the stop button
'compiler setup
$crystal = 1000000
$regfile = "attiny26.dat"
'hardware setup
Config Porta = Output
Config Portb = Output
Config Pina.2 = Input
Config Pina.3 = Input
'Alias names for the hardware
Gluegun Alias Porta.5 'names easy to read and follow
Offled Alias Porta.6
Onled Alias Porta.7
Startbutton Alias Pina.2
Stopbutton Alias Pina.3
'Dimension variables
Dim Mscount As LONG 'need a variable that can hold a really big number
Const Max_mscount = 3600000
'program starts here
Do
 Set Offled
 Reset Onled
 Reset Gluegun 'initially off

 Do 'wait for start button press
 Loop Until Startbutton = 0

 Reset Offled
 Set Onled
 Set Gluegun 'glue gun on
 Mscount = 0 'start counting from zero

 'note the use of a do-loop rather than a for-next to count the repititions
 'we do this because it is unknown when the user will push a button and reset/restart the count
 Do
 Mscount = Mscount + 10 'add 10 to milliseconds
 Waitms 10
 If Startbutton = 0 Then 'Check Switch
 Mscount = 0 'reset time to zero, so restart timer
 End If
 If Stopbutton = 0 Then 'Check Switch
 Mscount = Max_mscount 'set time to max, so cancel timing
 End If
 Loop Until Mscount > Max_mscount 'loop 3,600,000 times unless user changes mscount

Loop
Notes:
1. We wait 10mS – we could wait 1MS however 10mS is not so long that we would miss the switch press
2. Tthere is no debouncing of the switches, this is not really needed in this program because repeat switch
presses don’t cause any problems for us.

272

19 Basic interfaces and their programming
Having completed some introductory learning about interfacing and programming microcontrollers
it is time to learn more detail about interfacing.

Switches

Analogue to digital conversion using

LDRS
and Thermistors

Boosting the power output

to make
sound

and drive small
inductive loads

Parallel interfaces to

Liquid crystal displays

and multiple seven segment displays

Serial interfaces to

Real Time Clocks

and computer RS232 ports

273

19.1 Parallel data communications

Both internal and external communications with microcontrollers are carried out via buses, these
are groups of wires. A bus is often 8 bits/wires (byte sized) however in systems with larger and
more complex microcontrollers and microprocessors these buses are often 16, 32 or 64 bits wide.

Communication is carried out using 8 or more bits at a time. This is efficient as an 8 bit bus can
carry numbers/codes form 0 to 255, a 16 bit bus can carry numbers/codes from 0 to 65,535 and 32
bits can carry numbers/codes from 0 to 4,294,967,295. So data can move fairly fast on a parallel
bus.

Parallel communication is often used by computers to communicate with printers, because of this
speed. Only one printer can be connected to the parallel port on a computer, however within the
computer itself all the devices on the bus are connected all the time to the data bus. They all
share access to the data, however only the device that is activated by the address bus wakes up
to receive/send data.

274

19.2 LCDs (liquid crystal displays)

There are a great many different types of LCD available, we describe them by there various attributes.
Colour/Monochrome, alphanumeric/graphic. Some LCDs which are made for specific purposes with fixed
Characters such as these two.

Monochrome alphanumeric LCD wirh no
backlight

4 line alpahanumeric mono LCD with backlight

Mon graphic lcd 128x64 pixel

Colour graphic LCD 320x128pixel.

275

19.3 Alphanumeric LCDs

One of the best things about electronic equipment
nowadays are the alphanumeric LCD displays these
are simple single, double or 4 line displays for text
and numbers. These displays are becoming
cheaper and cheaper in cost, we buy them in bulk
from China using www.alibaba.com. The LCD is a
great output device and with Bascom so very easy to
use. They fit the need for student learning in
technology education very nicely.

Some common commands are

 cls - clear the screen

 LCD "Hello" - will display hello on the display

 locate y,x - line and position on the line of the cursor (where text will appear)

 Cursor OFF – hide the cursor (still there but invisible)

 LCD temperature – will display the value in the variable temperature on the display

Connecting an LCD to the microcontroller is not
difficult.
There are 14 or 16 pins on the LCD

1. 0V
2. +5V
3. Contrast
4. RS - register select
5. R/W - read/not write
6. E - Enable
7. D0
8. D1
9. D2
10. D3
11. D4
12. D5
13. D6
14. D7
15. Backlight + (optional)
16. Backlight 0V (optional)

Most LCDs are set up so that they can communicate in
parallel with either 4 bits or 8 bits at a time. The faster
system is 8 bits as all the data or commands sent to
the LCD happen at the same time, with 4 bit operation
the data/command is split into 2 parts and each is sent
separately. Hence it takes twice as long.

Apart from the 4 data lines another couple of lines are
necessary, these are control lines, RS , R/W, E. When
using Bascom the R/W line is connected
permanently to griund, and the other two lines need
to be connected to the micro. The advantage of 4 bit
operation is that the LCD uses only 6 I/O lines in total
on the micro. At the current time the contrast line can
be connected to ground as well.

276

19.4 ATTINY26 Development PCB with LCD

Although a breadboard was useful earlier for some introductory learning about connecting a
microcontroller and interfacing simple components such as LEDs and switche;, trying to use a
breadboard to connect an LCD is not easy, you just end up with too many wires that fall out of the
breadboard if the LCD gets moved. It is more useful to have a circuit board of some description.
Here is a development PCB that was designed to be useful for students when building their
circuits. It makes use of a standard 2 line 20 character alphanumeric LCD. It has a 16 way
connector (although the LCD used has no backlight so only 14 connections are used)

In the schematic we have connected the power to the LCD but not actually connected the control
lines. These are left unconnected so that students become familiar with the connections, it also
made the PCB much easier for students to solder not having so many thin tracks.

277

The physical pcb is designed around the physical dimensions of the LCD, so that the LCD and
board can be bolted together.

Top or Component view

Take care when wiring the header pins (connector) for the LCD as he polarity for the power must
be correct, there is a an area for prototyping other circuits on the board

PCB tracks view from Eagle

278

19.5 Completing the wiring for the LCD

Here are the details for the specific Sure Electronics LCD we are using. Highlighted are the 6 data
and control connections we need to make (note that pins 1,2,3,5 are already connected via PCB
tracks). The two control lines are RS(register select) and Enable. The 4 data lines are DB4 to DB7.

Looking at the development board it can be seen that there are already pads for the LCD,
The 6 connections have been added on the diagram below.

The order the 6
lines are
connected from
the LCD to the
micro does not
matter as long as
1. They are on
the same port
and 2. the order
used matches
the configuration
command in
Bascom.

To program the LCD using Bascom we need to add two lines of configuration program code, and
then use specific commands to make the display show something

Config Lcdpin =Pin , Db4 =Portb.3 , Db5 =Portb.6 ,
Db6 =Portb.4, Db7 =Portb.3 , E =Portb.1 , Rs =Portb.0
Config Lcd = 20 * 2 'configure lcd screen

279

19.6 LCD Contrast Control

In addition to the 4 data lines and the 3 control lines, there are two more pins on
the LCD for power (5V-VDD and 0V-VSS) and one for adjusting the contrast or
viewing angle (VO or VEE). Check the displays’ datasheet to find out what is
required for VO however for almost all modern alphanumeric type LCDs the voltage
is often very close to 0V so can be connected to 0V directly. You can connect via a
potentiometer or trimpot so that it is adjustable as in this circuit.
HThe voltage divider here is made up of both fixed and a variable resistance.
If the trim pot was 10k and the resistor was 47 k then the voltage for the contast would be

280

19.7 Learning to use the LCD

The first thing to learn about is how to put simple text on the LCD. In this program a number of
different variable types are used including strings.
'---

'Title Block

'Author: B.Collis

'Date: Aug 2009

'File Name: LCD_Ver2.bas

'--

'Program Description:

'use an LCD to display strings

'Hardware Features:

'LCD on portb - note the use of 4 bit mode and only 2 control lines

'Program Features:

'--

'Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the speed of operations inside the micro

$regfile = "attiny461.dat" 'the micro we are using

'--

'Hardware Setups

Config Porta = Output

Config Portb = Output

Config Lcdpin = Pin , Db4 = Portb.3 , Db5 = Portb.4 , Db6 = Portb.5 , Db7 = Portb.6 , E = Portb.2

, Rs = Portb.1

Config Lcd = 20 * 2 'conifgure lcd screen

'Hardware Aliases

'Initialise hardware

Cls 'clears LCD display

Cursor Off 'cursor not displayed

'Declare Constants

Const Waitabout = 6

Const Flashdelay = 250

'Declare Variables

Dim Message1 As String * 20

Dim Message2 As String * 20

Dim Xposition As Byte

Dim Count As Byte

'Initialise Variable

Message1 = "hello"

Message2 = "there"

Xposition = 5

'--

'Program starts here

Do

 For Count = 1 To 3

 Locate 1 , Xposition

 Lcd Message1 'display message stored in the variable

 Waitms Flashdelay

 Locate 1 , 1

 Lcd " " 'delete anything on this line of the lcd

 Waitms Flashdelay

 Locate 2 , Xposition

 Lcd Message2 'display message stored in the variable

 Waitms Flashdelay

 Locate 2 , 1

 Lcd " " 'delete anything on this line of the lcd

 Waitms Flashdelay

 Next

 Wait Waitabout 'seconds

Loop

281

19.8 Repetition again - the ‘For-Next’ and the LCD

This command makes programmers life easier by allowing easy control of the number of times
something happens. This is perhaps the essence of computer programming, getting the computer
to do repetitive work for you. If you want some text to move across an LCD then you could do it
the long way

Do
 Locate 2,1 ‘first position
 Lcd “Hello”
 Waitms timedelay
 Locate 2,1
 Lcd “ “

 Locate 2,2 ‘second position
 Lcd “Hello”
 Waitms timedelay
 Locate 2,2
 Lcd “ “

 Locate 2,3 ‘third posistion
 Lcd “Hello”
 Waitms timedelay
 Locate 23
 Lcd “ “
…
...
Loop

OR the smart way

Do
 For Position = 1 To 16 ‘
 Locate 2, position ‘move cursor w
 Lcd “Hello” ‘display text
 Waitms Timedelay 'wait a bit
 Locate 2, position ‘move cursor
 Lcd “ “ ‘blank lcd
 Next
 For Position = 16 To 1, step -1
 Locate 2, position ‘move cursor
 Lcd “world” ‘display text
 Waitms Timedelay 'wait a bit
 Locate 2, position ‘move cursor
 Lcd “ ” ‘blank text
 Next
Loop
End 'end program

Identifying where and how to use loops in your programs is an essential skill to practice lots when
learning to program. This is only one of several looping commands which all do similar (but not
exactly the same) things.

move cursor to position 2
put text on screen

wait
move cxursor back to postion 2

put spaces on screen

move cursor to position 3
put text on screen

wait
move cxursor back to postion 3

put spaces on screen

move cursor to position 1
put text on screen

wait
move cxursor back to postion 1

put spaces on screen

move cursor to position
put text on screen

wait
move cxursor back to postion

put spaces on screen

incr position

position = 1

N position = 16
Y

282

19.9 LCD Exerises

Here is a program that counts on the LCD
'---

'Title Block

'Author: B.Collis

'Date: Aug 2009

'File Name: LCD_Count1.bas

$sim

'--

'Program Description:

'use an LCD to display strings and numbers

'Hardware Features:

'LCD on portb - note the use of 4 bit mode and only 2 control lines

'Program Features:

'--

'Compiler Directives (these tell Bascom things about our hardware)

$crystal = 1000000 'the speed of operations inside the micro

$regfile = "attiny461.dat" 'the micro we are using

'--

'Hardware Setups

Config Porta = Output

Config Portb = Output

Config Lcdpin = Pin , Db4 = Portb.3 , Db5 = Portb.4 , Db6 = Portb.5

, Db7 = Portb.6 , E = Portb.2 , Rs = Portb.1

Config Lcd = 20 * 2

'conifgure lcd screen

'Hardware Aliases

'Initialise hardware

Cls 'clears LCD display

Cursor Off 'cursor not displayed

'---

'Declare Constants

Const Waitabit = 2

Const Flashdelay = 250

'---

'Declare Variables

Dim Message1 As String * 20 'a variable to store some text

Dim Message2 As String * 20 'a variable to store some text

Dim Xposition As Byte 'position of the text on the LCD

Dim Count As Byte 'a variable to count

'Initialise Variable

Message1 = "my counter"

'--

'Program starts here

Do

 Locate 1 , 1

 Lcd Message1

 For Count = 1 To 20

 Locate 2 , 1

 Lcd Count

 Waitms 500

 Next

Loop

End

283

When you run this program you will see there is a problem with the displaying of the numbers
The zero stays on the LCD whenthe counter goes from 20 back to 1 again.

Now here is a really important conept you need to understand. You need to separate the two
things going on here in your system
The first is the process of counting: 1,2,3,4,5,6…18,19,20,1,2,3,…
And the second is the output code LCD count.

These are two very separate things.
When we say LCD count, it puts the variable count onto the LCD if countis 1 digit it writes 1 digit, if
count is 2 digits it writes 2 digits.
The program doesn’t care what is on the LCD already it just overwrites it.
So the first time through the loop is does this

But after it has displayed 20

It goes back to 1 again and the 0 is stuck on the LCD.
So it looks like 10 but its actally only 1

Of course 6 looks like 60

So you need to know how to clear some digits on the lcd and you also need to know how to apply
it logically to each problem you encounter like this.
Fix 1: In this case we are displaying 2 digits so we could do this in our program
Do

 Locate 1 , 1

 Lcd Message1

 For Count = 1 To 20

 Locate 2 , 1 'blank the digits we are going to use before using

 Lcd " "

 Locate 2 , 1

 Lcd Count

 Waitms 1500

 Next

Loop

Try this out on your LCD, does the counting on the look nice or not.

284

Fix 2: add an extra space to the end o fthe count like this Lcd Count ; " "
Do

 Locate 1 , 1

 Lcd Message1

 For Count = 1 To 20

 Locate 2 , 1

 Lcd Count ; " "

 Waitms 1500

 Next

Loop

This code has a hidden problem, when the count is over 9 it takes up not 2 but three digits on the
LCD, and if you are displaying anything else on the LCD then it might overwrite it.

Fix3: only fix exactly what we want to fix
In this case when there is 1 digit blank the unused digit on the LCD
Do

 Locate 1 , 1

 Lcd Message1

 For Count = 1 To 20

 Locate 2 , 1

 Lcd Count

 If Count < 9 Then Lcd " "

 Waitms 1500

 Next

Loop

Note in my fixing of this probelm that I didn’t even consider using CLS in my loop, this is because
these LCDs are so slow that using a CLS in a loop causes the whole display to flicker a lot and it
looks aweful – to prove this I suggest you try this solution!

Do

 For Count = 1 To 20

 Cls

 Locate 1 , 1

 Lcd Message1

 Locate 2 , 1

 Lcd Count

 Waitms 1500

 Next

Loop

These ideas are repeated in different conexts in the next few sections to help you get used to
them.

285

19.10 Defining your own LCD characters

The displays have 8 locations (0 to 7) where you can
define your own characters
If you want to define a simple animation you can draw
these using the LCD DESIGNER in Bascom and have
the program write these to the screen one at a time
using a loop.

19.11 LCD custom character program

'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m32def.dat" 'our micro, the ATMEGA8535-16PI
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs

'LCD
Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 , Db7 = Portb.7 , E = Portb.0 ,
Rs = Portb.1
Config Lcd = 20 * 4 'configure lcd screen
' Hardware Aliases
 'clear lcd screen
'--
' Declare Constants
Const Rundelay = 300
'--

286

' Declare Variables
Dim X_pos As Byte
Dim location As Byte
' Initialise Variables
'--
' Program starts here
Cls
Cursor Off
Deflcdchar 0 , 32 , 4 , 10 , 4 , 6 , 20 , 10 , 1
Deflcdchar 1 , 32 , 4 , 10 , 4 , 6 , 4 , 10 , 18
Do
 For X_pos = 1 To 20 'for the wodth of the screen
 Locate 1 , X_pos 'position the cursor
 'find if odd(0) or even(1) location
 '-mod returns the remainder of the division I/2 (0 or 1)
 Location = X_pos Mod 2
 If Location = 0 Then 'no remainder so second location and all even ones
 Lcd Chr(0)
 Else 'rem =1 so first location and all odd ones
 Lcd Chr(1)
 End If
 Waitms Rundelay
 Locate 1 , X_pos 'reposition cursor
 Lcd " "
 Next

 'for a 3 stage animation
 '- define your third character here
 For X_pos = 1 To 20 'for the width of the screen
 Locate 1 , X_pos 'position the cursor
 'find if odd(0) or even(1) location
 '-mod returns the remainder of the division I/3 (0,1 or 2)
 Location = X_pos Mod 3
 If Location = 0 Then 'no remainder so third location
 Lcd Chr(0)
 Elseif Location = 1 Then 'first location
 Lcd Chr(1)
 Else 'second location
 Lcd Chr(2)
 End If
 Waitms Rundelay 'wait a bit
 Locate 1 , X_pos 'reposition cursor
 Lcd " " 'blank the old character
 Next
Loop
End

287

19.12 A simple digital clock

Here is a simple clock using the LCD as a display. It is a great way to know more about if-then and
making an LCD do what you want it to do.

$sim

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "attiny26.dat" 'the micro we are using

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Output 'LEDs on portB

Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 = Portb.4 , Db7 = Portb.5 , E

= Portb.1 , Rs = Portb.0

Config Lcd = 20 * 2 'configure lcd screen

' Harware Aliases

' initialise hardware

Cls 'clears LCD display

Cursor Off 'no cursor

'--

' Declare Constants

Const Timedelay = 350

'--

' Declare Variables

Dim Seconds As Byte

Dim Minutes As Byte

Dim Hours As Byte

Dim Day As Byte

Dim Month As Byte

Dim Year As Byte

' Initialise Variables

Seconds = 50

Minutes = 5

Hours = 14 '2pm

Day = 21

Month = 4 'april

Year = 10 '2010

'--

' Program starts here

Do

 Locate 1 , 5

 Lcd Hours

 Locate 1 , 8

 Lcd Minutes

 Locate 1 , 11

 Lcd Seconds

 Wait 1

 Incr Seconds

Loop

End 'end program

'--

288

Here is what the display looks like at the start (using the simulator)

There are two big problems to solve with this program:
1. The clock goes up by 1 second, however it doesn’t go from 59 back to 0
2. There is no ‘leading 0’ before any of the numbers i.e. 5 is shown not 05

Firstly lets solve the 59 going back to 0
Do

 Locate 1 , 5

 Lcd Hours

 Locate 1 , 8

 Lcd Minutes

 Locate 1 , 11

 Lcd Seconds

 Wait 1

 Incr Seconds

 If Seconds > 59 Then

 Seconds = 0

 Incr Minutes

 End If

Loop

End 'end program

Now you can write the rest of the code to sort out minutes and hours.

Second I will solve the leading zeros.
Think about when we want a leading zero, it is if the minutes are less than 10.

Do

 ‘display the time

 Locate 1 , 5

 Lcd Hours

 Locate 1 , 8

 If Minutes < 10 Then Lcd "0"

 Lcd Minutes

 Locate 1 , 11

 Lcd Seconds

 ‘increase the time

 Wait 1

 Incr Seconds

 ’add code to read switches and set time

 ’...

 ’fix the time

 If Seconds > 59 Then

 Seconds = 0

 Incr Minutes

 End If

Loop

End 'end program

Note that when an if-then has only one command it can go on the same line and we don’t need the
end-if.
There is a third issue, the clock will also need some more code so that you can set the time. Also
the clock is quite inaccurate, you can check this by monitoring the time over a few minutes. Some
of this can be fixed by checking how accurate the clock is over a day and changing wait 1 to
waitms something. This wont really fix the issue but it will improve it. A better solution is later in
the book.

289

19.13 Adding more interfaces to the ATTiny26 Development board

Using this board we can add other components such as LEDs, switches and a PIEZO.

Here is a board with two switches, two
LEDs and a piezo added to it. Now we
will look at how to add these components
one at a time.
Note that when this board was made an
area around the outside of the board was
left with holes for stress reliefing wires
that go off the board.

The process for adding these
components is:

2. Decide what you want to add
and find out the correct wiring
connections for it

3. Find the most convenient place
for them to connect to on the board,

4. Wire them up and add your
changes to the schematic.

First stage: add an LED

An LED requires a current limit resistor of about 1k
in series with the LED (it could also be another
common value such as 390, 470,560, 820 –
changing the value will make the brightness change).

The schematic above shows the series connections of the LED, note that the LED and resistor
canbe reversed in order but that the polarity of the LED must be the same.

We have not chosen a specific I/O pin at this stage.

290

Stage two find the best I/O pin to use
 An LED can be connected to any available I/O pin so in this case it was easier to choose the
pin based upon where the LED was to be mounted and then select a close I/O pin.

Here PortA.0 and PortA.1 were chosen.

The negative(cathode) of the LED (blue wire) is connected to a resistor, the other side of witch
connects to ground, the positive anode) of the LED (white wire) is connected to the pin of the
microcontroller.

Adding 2 switches – each switch requires its own pullup resistor

This is a circuit that students initially get wrong very often, they
connect the switch and resistor in series from the pin to gound,
when they are in series between VCC and ground.

So be very careful and make sure that the resistor goes from
the pin to VCC and the switch goes from the pin to ground

In the diagram only one switch and pullup resistor are shown
however 2 switches and their 2 pullup resistors are shown in the
picture.

What is the voltage on the micro when the switch is open?
What is the voltage on the micro when the switch is closed?

291

19.14 Ohms law in action – a multicoloured LED

Here is the datasheet for a multicoloured LED.Look carefully at the physica llayout, there are 4
legs

Note the wiring inside the LED how all the cathodes are connected together.

292

To wire this to a microscontroller we will need to use three I/O pins of the microand three
resistors. We do not use a single resistor on the cathode to ground.
Why?Imagine we turned on the red LED and i ws going, then we turned on the green LED the
current in the resistor would change changing the current in the red LED as well.

To work out the values of the 3 resistors we need toloo at the datasheet, there we find that the
LEDs have different volage requirements, (yet another good reason for not using 1 resistor)

RED Green Blue

Needs 2V Needs 3.4V Needs 3.4V (same as green)

20mA max current =
max brightness

20mA

V = 5V - 2V
V = 3V

V = 5V - 3.4V
V = 1.6V

R = V/I
R = 3V/0.020A
R = 150 ohm

R = V/I
R =1.6V/0.020A
R = 80 Ohm

same as green

If the LEDs don’t need to be so bright we could test them with a power supply and try different
values of resistors.
If we found that 5mA was enough we would need to calculate the values again.

R = V/I
R = 3V/0.005A
R = 600 ohm

R = V/I
R =1.6V/0.005A
R = 320 Ohm

same as green

293

294

20 Basic analog to digital interfaces

In the real world we measure things in continuously varying amounts.

The golf ball is some distance from the hole. It might be 11 metres from
the hole, it might be 213.46236464865465437326542 metres from the
hole.

The airplane might have an altitude of
11,983 metres or perhaps
1,380.38765983 metres.

A computer works in binary (or digital) which means it has the ability to sense only two states. For
example the golf ball is either in the hole or not. The plane is either in the air or not.

When we want to measure the actual distance in binary we must use a number made up of many
digits e.g. 101011010 (=346 decimal) metres.

20.1 ADC - Analog to Digital conversion

We need to be able to determine measurements of more than on and off, 1 and 0, or in and out. To
do this we convert a continuously varying analogue input such as distance, height, weight, lighltlevel
etc to a voltage.

Using the AVR this analogue value can then be converted to a binary number within the range 0 to
1111111111 (decimal 1023) within the microcontroller. We can then make decisions within our
program based upon this information to control some output.

20.2 Light level sensing

We will measure the amount of light falling on a sensor and use the LED's on the microcontroller
board to display its level.

The LDR
The LDR (Light Dependant Resistor) is a semiconductor device that
can be used in circuits to sense the amount of light. Get an LDR and
measure the resistance when it is in the dark and measure the
resistance when it is in bright sunlight. Record the two values.

295

20.3 Voltage dividers review

When you studied ohms law you also studied the use of voltage dividers. A voltage divider is typically
two resistors across a battery or power supply.

A voltage divider is shown here. With the 5volts applied to the circuit the
output voltage will be some proportion of the input voltage.

If the two resistors are the same value then the output voltage will be
one_____ (quarter/half/third) of the input voltage; i.e. it has been divided
by ______ (2/3/4). If we change the ratio of the two values then the output
voltage will vary.

With R1 larger than R2 the output voltage will be low and with R2 larger
than R1 the output voltage will be high.

Replace one of the resistors with an LDR, we know that the resistance of an
LDR changes with the amount of light falling on it.

If the light level is low, and then the resistance is _____ (high/low),
therefore the output voltage is _____ (low/high).

If the light level is high then the resistance is _____(high/low), therefore the
output voltage is _____ (low/high).

Now this is what we call an analogue voltage. Analogue means that the
voltage varies continuously between 0 and 5 volts.

 But computers only know about digital voltages 0 volts or 5 Volts. We
need to convert the analog voltage to a digital number that the computer
can work with. We do that with the built in ADC (Analogue to Digital
Converter) inside the Microcontroller.

20.4 AVR ADC connections

On a micro such as the ATMega8535/16, Port A has dual functions
inside the microcontroller. Its second function is that of input to the
internal ADC. In fact there are 8 separate inputs to the ADC one for
each pin of portA.

In the diagram a 4k7 resistor is shown, this can be changed for a higher
or lower value to achive the effect you want with the LDR (also the LDR
and resistor can be swapped in the circuit to alter the effect as well)

296

20.5 Select-Case

In this example you will learn about how to use select case which is a very tidy way of writing a whole
lot of if-then statements.

Specification from the brief:
Turn on one of 4 leds which represents one of 4 levels of light.

Algortithm
When the lightlevel is brightest turn on the 4th led
When the lightlevel is medium high turn on 3rd led
When the lightlevel is low turn on 2nd LED
When the lightlevel is very low/dark turn on 1st LED

Planning Tool Selection
 (A table is selected to help us clarify the algorithm and plan the program)

Lightlevel range

testing values using simple math

output

From 901 to 1023

Lightlevel > 900 (ignore over 1023)

LED 3

From 601 to 900

Lightlevel > 600 AND Lightlevel < 901

LED 2

From 401 to 600

Lightlevel > 400 AND Lightlevel < 601

LED 1

From 0 to 400

Lightlevel < 401

LED 0

Planning using a flowchart

If Lightlevel > 900 Then Portc = &B11110111
If Lightlevel > 600 And Lightlevel < 901 Then Portc = &B11111011
If Lightlevel > 400 And Lightlevel < 601 Then Portc = &B11111101
If Lightlevel < 401 Then Portc = &B11111110

 lightlevel > 900? Y
N

led 3

 lightlevel > 600 and lightlevel < 901? Y
N

led 2

 lightlevel < 301 Y
N

led 0

 lightlevel >300 and lightlevel < 601? Y
N

led 1

297

There is a much better way to plan this code, so that it is more efficient (the micro has less to
do and the program runs faster). It does this by once having found a solution it stops checking
for any other solutions. This can save a lot of processing in large programs. You do however
have to watch the order in which you check values and how you use the < and > tests.

This is handled for us by the select case statement

Select Case Lightlevel

 Case Is > 900 : Portc = &B11110111
 Case Is > 600 : Portc = &B11111011
 Case Is > 400 : Portc = &B11111101
 Case Is < 401 : Portc = &B11111110

End Select

Once the select case has found a solution it does no more checking and exits the at
the END SELECT

led 3

led 2

led 1

led 0

 lightlevel > 900? Y
N

 lightlevel > 600? Y
N

 lightlevel > 300? Y
N

 lightlevel < 301 Y
N

298

20.6 Reading an LDR’s values

Now we will write some code to make use of the LDR.
Note that the variable used in this program is of size WORD i.e. 2bytes (16 bits)
This is because the values given from the analogue to digital converter are bigger than 255.
Note also a new programming structure select-case-end select has been used.Select-case
is equivalent to a whole lot of IF-THEN statements

'--
' 1. Title Block
' Author: B.Collis
' Date: 7 Aug 2003
' Version: 1.0
' File Name: LDR_Ver1.bas
'--
' 2. Program Description:
' This program displays light level on the LEDs of portc
' 3. Hardware Features:
' LEDs as outputs
' An LDR is connected in a voltage divider circuit to portA.0
' in the dark the voltage is close to 0 volts, the ADC will read a low number
' in bright sunlight the voltage is close to 5V, the ADC will be a high value

' 4. Software Features:
' ADC converts input voltage level to a number in range from 0 to 1023
' Select Case to choose one of 8 values to turn on the corresponding LED
' 1023, 895, 767, 639, 511, 383, 255, 127,

' --
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Pina.0 = input ' LDR
Config Portd = Output 'LEDs on portD
Config Adc = Single , Prescaler = Auto, Reference = Avcc
Start Adc
' 7. Hardware Aliases

' 8. initialise ports so hardware starts correctly
' must not put a high on the 2 adc lines as this will turn on the micros
' internal pull up resistor and the results will be erratic
Portc = &B11111100 'turns off LEDs

'--

299

' 9. Declare Constants
'--
' 10. Declare Variables
Dim Lightlevel As Word
' 11. Initialise Variables
'--
' 12. Program starts here
‘ note the use of select case instead of many if statements(see next section)
Do
 Lightlevel = Getadc(0) ' number from 0 to 1023 represents the light level
 Select Case Lightlevel
 Case Is > 895 : Portc = &B01111111 'turn on top LED in bright light
 Case Is > 767 : Portc = &B10111111
 Case Is > 639 : Portc = &B11011111
 Case Is > 511 : Portc = &B11101111
 Case Is > 383 : Portc = &B11110111
 Case Is > 255 : Portc = &B11111011
 Case Is > 127 : Portc = &B11111101
 Case Is < 128 : Portc = &B11111110 'turn on bottom LED in dark
 End Select
Loop ' go back to "do"

End 'end program
'--
' 13. Subroutines
'--
' 14. Interrupts

300

20.7 Marcus’ year10 night light project

In this project Marcus used 28 high intensity surface mount LEDs soldered to the copper side
of the PCB.

301

The schematic is quite straight forward with an LDR on PinA.0.

Initial programs were desgined to
Test the LEDs and the LDR, then the next program combined them together.
'---

'Program Description

'This program shows LED working when LDR detects different light

level

'---

'Hardware features:

'LEDs as outputs

'An LDR is connected in a voltage divider circuit to portA.0

'In the dark the voltage is close to 0 volts, the ADC will read a

high number

'In bright sunlight the voltage is close to 5v, the AVC will be a

high value

'--

'Software features:

'ADC converts input voltage level to a number in range from 0 to 1023

'---

'Computer directives

$crystal = 8000000

$regfile = "m8535.dat"

'--

'Hardware setups

Config Porta = Output

Config Pina.0 = Input

Config Portb = Output

Config Portc = Output 'make these micro pins

outputs

302

Config Portd = Output

Config Adc = Single , Prescaler = Auto

Start Adc

'---

'Declare variables

Dim Lightlevel As Word

Dim I As Byte

'---

'Program starts here

Do

 Lightlevel = Getadc(0)

 Select Case Lightlevel

 Case Is > 700 : Porta = &B00001000

 Portb = &B00010000

 Portc = &B00100000

 Portd = &B01000000

 Wait 10

 Case Is > 600 : Porta = &B00011000

 Portb = &B00011000

 Portc = &B00110000

 Portd = &B01100000

 Wait 10

 Case Is > 500 : Porta = &B00111000

 Portb = &B00011100

 Portc = &B00111000

 Portd = &B01110000

 Wait 10

 Case Is > 400 : Porta = &B01111000

 Portb = &B00011110

 Portc = &B00111100

 Portd = &B01111000

 Wait 10

 Case Is > 300 : Porta = &B11111000

 Portb = &B00011111

 Portc = &B10111100

 Portd = &B11111100

 Wait 10

 Case Is > 200 : Porta = &B11111010

 Portb = &B00011111

 Portc = &B10111110

 Portd = &B01111111

 Wait 10

 Case Is < 201 : Porta = &B01111111

 Portb = &B00011111

 Portc = &B11111111

 Portd = &B11111111

 Wait 10

 End Select

Loop

End

The next stage in a project like this might be to implement a timer so that the night light turns
off automatically after a set period of time.

303

20.8 Temperature measurement using the LM35

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is
linearly proportional to degrees Celsius temperature.

The usual temperature sensor that comes to mind is the
Thermistor however thermistors are not linear but
logarithmic devices as shown in this graph. If you do
want to use a thermistor then try putting a resistor in
parallel with it to make it more linear, however it will not
be linear over its whole range.

The LM35 varies linearly over its range with typically
less than a ¼ degree of error. The voltage output
changes at 10mV per degree. Connect the LM35 to 5V,

ground and one analog input pin. The code is very straight forward

Config ADC= Single, prescaler = auto
Dim Lm35 as word
Read_LM35:
 Lm35 = getadc(2)
 Locate 2,1
 Lm35 = lm35 / 2 (rough conversion to degrees)
 Lcd “temperature= ” ; LM35 '
return

The value increases by 2 for every increase of 1 degree. When connected to 5V a
temperature of 25 degrees will give an output of 250mV and an ADC reading of approximately
50 (the ADC range is 0 to 1024 for 0 to 5v).

304

20.9 A simple temperature display

Algorithm:
In this project there is no display apart from the LEDs so the temperature is displayed by
flashing the LEDs, Red is 10s of degrees, Green is units of degrees. So a temperature of 23
degrees celcius will be displayed as the red LED flashing twice followed by the green LED
flashing 3 times, followed by a 2 second wait.

Here is the code for this
'--

' Author: B.Collis

' Date: 19 June 2010

' File Name: Tiny45_temprV3.bas

'--

' Program Description:

' reads LM35 connected to ADC and displays temp by flashing leds

' Hardware Features:

' _____

' RESET -| |- VCC

' LM35 - ADC3/PB3 -| |- PB2/ADC1 - RED LED

' ADC2/PB4 -| |- PB1 - GRN LED

' GND -|_____|- PB0 - YEL LED

'

'--

It is good
practice to
include a title
block and full
description of
your hardware
and program at
the beginning of
your code.

With a small
micro a simple
text diagram
was created to
show the
connections.

'Compiler Directives (these tell Bascom things about the hardware)

$regfile = "attiny45.dat" 'the micro we are using

305

$crystal = 1200000 'the speed of the micro

'attiny45 is 9.6 MHz / 8 = 1.2MHz

'--

' Hardware Setups

' setup direction of all ports as outputs (by default they power up

as inputs)

Config Portb = Output

Config Pinb.3 = Input 'LM35 on B.3

Config Adc = Single , Prescaler = Auto , Reference = Internal_1.1

Start Adc

' the attiny45 has 2 internal references 1.1 and 2.56

' We want to measure voltages in the range of 0 to 0.5 or so,

' the 1.1V reference is better because it will give us a more

precise reading

' A voltage of 0.25V will be converted by 0.25/1.1 * 1023

' and become the number 232,

' so the ratio of ADC voltage to temperature is 1023/1.1*100 = 9.3

' if you can live with the error divide it by 9

' 0.25V (25deg) becomes 232/9 = 25.77 on the display

' if you want more accuracy then use single sized variables for the

division

'Hardware Aliases

Redled Alias Portb.2 '10s of degrees

Grnled Alias Portb.1 'units of degrees

Yelled Alias Portb.0 'not used inthis verison of

the code

'--

Here the
hardware
attached to the
micro is setup,
there is a
decription of
why the 1.1v
reference was
chosen

'Declare Constants

Const Flashdelay = 250

Const Tempr_conv_factor = 9 'rough conversion factor

Const Tempr_conv_offset = 1 'rough offset for rough conversion

'--

Although a
conversion of 9
looked like it
would work, the
temperature
was out by a
degree at room
temperature.
This was found
by measuring
the LM35
voltage out put
as 0.228 and
seeing the LED
flash the
number 24.
This probably
enough
accuracy for
room
temperature
measurements
as the LM35
has at best an
accuracy of ¼
of adegree
anyway.

' Declare Variables

Dim Tempr As Word '

Dim Tempr_10s As Byte 'temperature tens

Dim Tempr_1s As Byte 'temperature units

Variables used
in the program
These are not

306

'--

given initial
values because
they are
measured

' Program starts here

Set Redled 'led off

Set Grnled 'led off

Set Yelled 'led off

Turn off the
LEDs at the
beginning

307

Do

 Tempr = Getadc(3) 'read the ADC value

 Tempr = Tempr / 9 'rough conversion due

to 1.1V internal reference being used

 Tempr = Tempr - 1 'rough compensation for rough

conversion

The first part of the
program reads the
temperatire and
converts it to a
useable value

 'split the tempr into 2 digits

 Tempr_10s = Tempr / 10

 Tempr_1s = Tempr Mod 10

This is a vital piece of learning here about division
and the use of modulus. We are dealing with whole
numbers when we use words , bytes and intergers in
Bascom. So if we divide 27 by 10 we get 2 (note that
there is no rounding) so a command exists <MOD>
that allows us to get the remainder of the division 27
MOD 10 will return 7.

 'flash the tempr on the LEDs

 While Tempr_10s > 0 'flash the red led the number

of 10s

 Reset Redled

 Waitms Flashdelay

 Set Redled

 Waitms Flashdelay

 Decr Tempr_10s

 Wend

 Waitms 200

 While Tempr_1s > 0 'flash the grn led the number of

units

 Reset Grnled

 Waitms Flashdelay

 Set Grnled

 Waitms Flashdelay

 Decr Tempr_1s

 Wend

 Wait 2

Loop

End 'end program

Flashing the leds
requires us to set a
loop in motion, we
control the number of
times the loop
repeats by starting it
with the number and
progressively
subtracting 1 each
time.

This is actually an
efficient piece of
code as
microcontrollers
programs are
generally more
efficient if they loop
down to zero rather
than some number
other than zero, this
is because of the way
the hardware in a
micro works

308

20.10 LM35 temperature display
'--

' Title Block

' Author: B.Collis

' Date: Nov 2011

' File Name: LM35_Ver2.bas

' --

' Program Description:

' This program displays temperature on the LCD

' An LM35 temperature sensor is connected to portA.0

' LCD to PortB

' --

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the speed the micro porcesses

instructions

$regfile = "m16def.dat" 'the particular micro we are using

' --

' Hardware Setups

' setup direction of all ports, initially as outputs

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 ,

Db7 = Portb.7 , E = Portb.1 , Rs = Portb.0

Config Lcd = 20 * 4 'configure lcd screen

Config Pina.0 = Input 'LM35 temperature sensor

'setup the ADC to do a conversion whenever we use the command

getadc()

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Start Adc

' Hardware Aliases

Backlight Alias Portd.4

' --

' Declare Constants

Const Reading_delay = 2000

' --

' Declare Variables

Dim Adc_value As Word '10bit adc value needs word variable

Dim Rough_temperature As Byte

Dim Accurate_temperature As Single

Dim Temperature As String * 5

' Initialise Variables

309

' --

' Program starts here

Cursor Off

Cls

Set Backlight

Do

 Gosub Read_lm35_voltage Gosub Disp_adc_reading

 Gosub Calc_rough_tempr

 Gosub Disp_rough_tempr

 Gosub Calc_accurate_temp

 Gosub Disp_accurate_temp

 Waitms Reading_delay

 'these subroutines do not need comments as they have useful names

Loop

End 'end program

' --

'Subroutines -these are actions so often start with words like read,

calc, displ, squeeze, move...

' a subroutine is best if it only contains one action (even if it

consists of only a few lines of code

' this makes them easier to follow, modify and reuse.

Read_lm35_voltage:

 Adc_value = Getadc(0) 'number from 0to1023 represents the voltage

in

Return

Disp_adc_reading:

 Locate 1 , 1

 Lcd "adc reading= " ; Adc_value ; " "

Return

Calc_rough_tempr:

 'this is a rough conversion as words can only be whole numbers

 Rough_temperature = Adc_value / 2

Return

Disp_rough_tempr:

 Locate 2 , 1

 Lcd "rough tempr= " ; Rough_temperature ; " "

Return

310

Calc_accurate_temp:

 'using singles we can have decimal places in our calculations

 Accurate_temperature = Adc_value 'convert word to single

 'adc_value of 51 = 0.259V

 'conversion factor is 51/25.9= 1.96911197

 Accurate_temperature = Accurate_temperature / 1.96911197

 'turn the single into a string and round it to 1 decimalplace

 Temperature = Fusing(accurate_temperature , "#.#")

 'note we can do maths with numbers stored in singles

 ' we cannot do maths with numbers strored in string form

 ' as they are no longer numbers just codes representing digits

Return

Disp_accurate_temp:

 'this subroutine displays the two accurate readings one is a

number

 'the other is a number in string form

 Locate 3 , 1

 Lcd "tempr= " ; Accurate_temperature ; " "

 'display 1 decimal place plus deg symbol and capital C

 Locate 4 , 1

 Lcd "tempr (1dp)= " ; Temperature ; Chr(223) ; Chr(67)

Return

311

20.11 Force Sensitive Resistors

The FSR is a neat device for sensing pressure, its not accurate enough to measure weight
but useful to detect the presence of someone standing on a mat or tapping on a surface.

These are used in exactly the same type of circuit as the LDR (voltage divider with a 10K).
You must be extremely careful trying to solder to these as the plastic melts so easily. You
may find that the use of some type of connector may make your project cheaper!

20.12 Piezo sensor

A piezo make s aperfect vibration sensor in exactly the
same voltage divider circuit, especially if you fixed one
side of it mechanically to something and the other side is
left to float inthe air. You can even buy more sensitive
version of this type of sensor – they make great impact
sensors.

312

20.13 Multiple switches and ADC

There is a very convenient way of reading multiple switches with your
microcontroller and only use 1 input port.

By making up a long voltage divider as in this diagram and connecting its
output to a microcontroller ADC pin, the voltage will change to a different
voltage output for every different switch press. This happens because the
voltage divider changes the number of resistors in the voltage divider for
every different switch press

If no switch is pressed then there is no voltage divider as all the resistors
R21 to R31 are unconnected. The input voltage to the ADC will be Vcc
(5V) and the ADC reading will be max (1023).

If S1 is pressed then othere is also no voltage divider, however the adc
input is now connect to ground (0V) and the adc reading will be 0.

If s2 is pressed there will only be two resistors in the voltage divider and
the output will be

Vout =

 = 0.5V (ADC reading of 0.5/5*1023 = 102)

If S3 is pressed then only 3 resistors will be in the voltage divider and the
output will be

Vout =

 = 0.667V (ADC reading of 0.667/5*1023 = 136

If S4 is pressed then only 4 resistors will be in the voltage divider and the
output will be

Vout =

 = 0.75V (ADC reading of 0.75/5*1023 = 153

The emerging patterns here are that the output is becoming larger and
larger, and the differences between the steps are becoming closer and
closer. Note the pattern in the voltages 1/2Vcc , 2/3Vcc, 3/4Vcc, 4/5Vcc,
5/6Vcc, 6/7Vcc....
This means that there is a limit to the number of switches that can be put
in this type of circuit.

313

21 Basic System Design

21.1 Understanding how systems are put together

A product or device is not just a collection of components, it is much more, the inventor of the
device didn’t just combine some parts together, they created a system. They envisaged it as a
whole system where all the parts have a unique purpose and together they function to make the
product complete.AND they developed it as part of a bigger process.

An example is a food processor.
To analyse the system

1. Draw a system block diagram identifying and
describing all the inputs and outputs of the system

a. Motor – 3 speed
b. Motor driver electronics
c. speed control – 4 position switch
d. bowl safety switch
e. Power LED, Bowl Lock LED (not shown in

picture)
2. Describe in words how these interact with each other,

use logic descriptors such as AND, OR and NOT.
3. Design the flowchart to represent the operational logic

21.2 Food Processor system block diagram

PSU

Bowl
Safety
Switch

controller

motor
Motor
Driver

Speed
Control
Setting

Off
Low
Med
High

Bowl
Lock
LED

Power
LED

A
B

21.3 Subsystems

Note that some of the items in the above system are systems themselves. The motor driver, the
PSU, the motor and the controller are all systems (the LEDs and switch are components). When
we use a system within another system we call it a subsystem.

21.4 Food Processor system functional attributes- algorithm

 When power is applied the power LED goes

 When power is applied AND the bowl is securely fitted the Bowl lock LED is on.

 When power is applied AND the bowl is securely fitted AND the speed control is set above
zero the motor will run.

 The motor has 2 inputs:

 When no power is applied to either the motor is off.

 When power is applied to A it goes slow.

314

 When power is applied to B it goes medium speed.

 When power is applied to both it goes fast. When the speed control is varied the motor

21.5 Food Processor system flowchart

Here is a first pass at a
flowchart for the system. It
does however need work as
there are a number of
problems with it.

Can you identify any?

1. It can be turned on but

when the speed switch
is turned off, the motor
does not turn off.

2. If the bowl is removed
while turned on then the
motor does not turn off.

3. The BowlLockedLed
can never be turned off.

Develop a better flowchart
for a program for the food
processor.

Food
Processor

 Speed 3 Y

N

MotorA on
MotorB on

 Speed 2 Y

N
MotorB on

 Speed 1 Y

N
MotorA on

power LED on
MotorA off
MotorB off

BowlLockLED off

N bowl locked?
Y

BowlLockedLed on

315

21.6 Toaster Design

A toaster is another good example of a system.

1. Identify all the parts of the toaster and draw a system
block diagram

2. Describe the system operation – how the parts of the
system interact with each other

3. Design the flowchart

21.7 Toaster - system block diagram

21.8 Toaster Algortihm

Initially: the solenoid is off, the LEDs are off,the piezo is quiet and the elements are off
When the toast lever is pressed down the solenoid is activated to hold the toast down

If the setting is normal both the elements turn on
 and the normal LED comes on

for the time set by the cook control
If the setting is crumpets, the left comes on max and the right comes on at half power
 and the crumpet LED comes on

for the time set by the cook control
If the setting is frozen the time is extended by 1 min (either crumpet or normal)
 and the frozen LED comes on
If the sensor detects smoke the solenoid is released and the piezo beeps quickly 4 times
If the time is up the the solenoid is released and the piezo beeps twice

Relay 1

Relay 2
Right

Left
Stop

Normal
Crumpets

Frozen

Toast setting

Toast down

Toast cooked sensor

cook time

Heating elements

Hold down
solenoid

Normal LED

Crumpet LED

controller

PSU

Frozen LED

Piezo Beeper

316

22 Basic System development - Time Tracker.

It is often useful for students to see worked examples; this small project is a worked example not
just of a timer project but of the process of development for an electronics project at school.

The process requires several iterations (cycles) of development. For some students the process
described here will be trivial (extremely simply), however it is important that students understand
the process and can carry it out.

Stage 1:

 Stakeholder consultation

 Initial brief

 Block diagram

 Algorithm

 Flowchart - a model of the internal process that the microcontroller must carry out

 Schematic

 Prototype development

 Program development

 Feedback from stakeholder
Stage 2:

 Refinement of brief – modify/ add/delete specifications

 Modification of schematic/algorithm/flowchart/prototype/program as required

 Feedback from stakeholder
Stage 3:

 Refinement of brief – modify/ add/delete specifications

 Modification of schematic/algorithm/flowchart/prototype/program as required

 Feedback from stakeholder
Stage 4:

 Refinement of brief – modify/ add/delete specifications

 Modification of schematic/algorithm/flowchart/prototype/program as required

 Evaluation by stakeholder

317

22.1 System context diagram and brief

The system context diagram is a visual representation of a brief.

318

22.2 Time tracker block diagram

319

22.3 Algorithm development

22.4 Schematic

The schematic for the ATTiny26 prototype PCB has been modified to include the components for
the switch and LED. Note the LED connection via a current limit resistor, and the switch
connection has a pullup resistor.

320

22.5 Time tracker flowchart and program version 1

$crystal = 1000000 'the speed of the micro

$regfile = "attiny26.dat" 'our micro

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,

Db7 = Portb.6 , E = Portb.1 , Rs = Portb.0

Config Lcd = 20 * 2 'configure lcd screen

'Hardware Aliases

Grn_sw Alias Pina.7

Piezo Alias Porta.3

'Declare Variable to store timing

Dim Seconds As Byte

'program starts here

Cls

Cursor Off

Lcd "Time Tracker V1"

Do

 'setup countdown value

 Seconds = 5 '5secs for testing

purposes

 'wait for start switch

 Do

 Loop Until Grn_sw = 0

 ‘need no debounce as next line has a

delay

 ‘start countdown

 Do

 Waitms 1000

 Decr Seconds

 Locate 2 , 1

 Lcd Seconds

 Loop Until Seconds = 0

 'countdown finished so play sound

 Sound Piezo , 150 , 100

Loop 'return to start

End

setup variables

start

N grnstart=0?
Y

countdown

play sound

N countdown=0?
Y

321

22.6 Time Tracker stage 2

At this point the student should make contact with their stakeholder or client and show them what
has been done. After the client in this case wanted an LED added to the product to show when the
timer was not timing and to change to a double beep when the timer times out.

The student makes the following additions to their journal for their project:
Stakeholder consultation carried out and:

1. Brief: new or changed specifications recorded.
2. Algorithm changes described (no need for a new form - just write it into the journal)
3. Block diagram – saves as new version, makes changes and print for journal
4. Schematic: save as new version, make changes and print for journal
5. Layout: make changes to layout in journal or print new version with changes
6. Flowchart – saves as new verison, makes changes and prints for journal
7. Program – saves as new version, makes changes and prints for journal

'--

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed

'green led is on when not counting

'double beep at end

'--

'Compiler Directives (these tell Bascom things about our hardware)

$regfile = "attiny26.dat" 'our micro

$crystal = 1000000 'the speed of our micro

'--

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,

Db7 = Portb.6 , E = Portb.1 , Rs = Portb.0

Config Lcd = 20 * 2 'configure lcd screen

Piezo

lcd

Grn
Sw

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

Microcontroller

Grn
Led

Time Tracker System Block Diagram v2

322

'Hardware Aliases

Grn_led Alias Porta.1

Piezo Alias Porta.3

Grn_sw Alias Pina.7

'---

'Declare Variables

Dim Seconds As word 'changed to word as need to count more than 255

'---------------------------

'program starts here

Cls

Cursor Off

Lcd "Time Tracker V2"

Do

 Seconds = 5 initial value to count down

from

 Set Grn_led

 Do

 Loop Until Grn_sw = 0'wait for start

switch

 Reset Grn_led

 Do

 'start countdown

 Waitms 1000

 Decr Seconds

 'display time

 Locate 2 , 1

 Lcd Seconds

 Loop Until Seconds = 0

 'countdown finished so play sound

 Sound Piezo , 150 , 100

 Waitms 50

 Sound Piezo , 150 , 100

Loop

End 'end program

start

setup variables

countdown

play sound

N countdown=0?
Y

N grnstart=0?
Y

grn_led on

grn_led off

323

22.7 Time Tracker stage 3

At this point the student should make another contact with their stakeholder or client and show
them what has been done. After this the client wanted a second (red) LED added to the product
to flash while the timer was timing.

The students makes the following additions to their journal for their project:
Stakeholder consultation carried out and:

1. Brief: new or changed specifications recorded.
2. Algorithm: changes described (no need for a new form - just write it into the journal)
3. Block diagram: saves as new version, makes changes and prints for journal
4. Schematic: save as new version, make changes and print for journal
5. Layout: make changes to layout in journal or print new version with changes
6. Flowchart: saves as new verison, makes changes and prints for journal
7. Program: saves as new version, makes changes and prints for journal

'--

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed

'green led is on when not counting

'double beep at end

'red led flashes once per second

'--

'Compiler Directives (these tell Bascom things about our hardware)

$regfile = "attiny26.dat" 'our micro

$crystal = 1000000 'the speed of our micro

'--

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,

Db7 = Portb.6 , E = Portb.1 , Rs = Portb.0

Piezo

lcd

Red
Led

Grn
Led

Grn
Sw

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

Microcontroller

Time Tracker System Block Diagram v3

324

Config Lcd = 20 * 2 'configure lcd screen

'Hardware Aliases

Grn_led Alias Porta.1

Red_led Alias Porta.0

Piezo Alias Porta.3

Grn_sw Alias Pina.7

'--

'Declare Variables

Dim Seconds As word

'----------------------

'program starts here

Cls

Cursor Off

Locate 1 , 3 '

Lcd "Time Tracker V3"

Do

 Set Grn_led

 Seconds = 5 'initial value to count down

from

 Do

 Loop Until Grn_sw = 0 'wait for start

switch

 Reset Grn_led

 Do

 'countdown

 Set Red_led 'added flashing red LED

 Waitms 50

 Reset Red_led

 Waitms 950

 Decr Seconds

 'display time

 Locate 2 , 10

 If Seconds < 10 Then Lcd "0"

 Lcd Seconds

 Loop Until Seconds = 0

 'beeps

 Sound Piezo , 150 , 100

 Waitms 50

 Sound Piezo , 150 , 100

Loop

End 'end program

start

setup variables

play sound

N countdown=0?
Y

N grnstart=0?
Y

grn_led on

grn_led off

countdown
RED LED

flashes every second

325

22.8 Time Tracker stage 4

At this point the student made yet another contact with their stakeholder or client and showed
them what has been done. After this the client wanted a significant change to the project; they
thought the timer would be really useful if the time delay could be changed. Specifically they want
to be able to push a second switch to increase the count time from 30 to 100 seconds in amounts
of 30 seconds; e.g. 30-60-90-120-150-180-210-240-270-300 seconds.

The students makes the following additions to their journal for their project:
Stakeholder consultation carried out and:

1. Brief: new or changed specifications recorded.
2. Algorithm: changes described (no need for a new form - just write it into the journal)
3. Block diagram: saves as new version, makes changes and prints for journal
4. Schematic: save as new version, make changes and print for journal
5. Layout: make changes to layout in journal or print new version with changes
6. Flowchart: saves as new verison, makes changes and prints for journal
7. Program: saves as new version, makes changes and prints for journal

Of course some students may be able to go straight to this final version of the product straight
away; however in doing this they are missing out on critical marks, as the highest grades come
from stakeholder consultations and subsequent modification to their project.

This final version of the block fiagram has all of the components to date.

The algorithm now has been modified to include:

While waiting for the user to press the green start button, f they press the white button the time will
increase in amount sof 30 seconds to a maximum of 300 seconds.

Piezo

lcd

Red
Led

Grn
Led

Grn
Sw

Wht
Sw

Input
Devices

Process
Device

Output
Devices

4.5VDC
Batteries

Microcontroller

Time Tracker System Block Diagram v4

326

start

setup variables

grn_led on

incr seconds by 30

seconds=30 secs >300? Y
N

N grnstart=0?
Y

grn_led off

countdown
RED LED

flashes every second

N countdown=0?
Y

play sound

 wht_btrn=0? Y
N

327

'--

'Title Block

' Author: A. Student

' Date: Jul 09

' File Name: TimeTrackerV4

'--

'Program Description:

'30 second countdown timer

'lcd displays seconds counting after switch pressed

'green led is on when not counting

'double beep at end

'red led flashes once per second

'added ability to increase seconds count with white switch

'added switch labels to LCD screen

'--

'Compiler Directives (these tell Bascom things about our hardware)

$regfile = "attiny26.dat" 'our micro

$crystal = 1000000 'the speed of our micro

'--

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Pina.6 = Input

Config Pina.7 = Input

'LCD setup

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.3 , Db6 = Portb.5 ,

Db7 = Portb.6 , E = Portb.1 , Rs = Portb.0

Config Lcd = 20 * 2 'configure lcd screen

'Hardware Aliases

Grn_led Alias Porta.1

Red_led Alias Porta.0

Piezo Alias Porta.3

Grn_sw Alias Pina.7

Wht_sw Alias Pina.6

'--

'Declare Constants

Const Debouncetime = 10

Deflcdchar 0 , 32 , 4 , 2 , 31 , 2 , 4 , 32 , 32

'--

'Declare Variables

Dim Seconds As Word

'Initialise Variables

Seconds = 30

'--

'program starts here

Cls

Cursor Off

328

Do

 'setup initial lcd display

 Cls

 Set Grn_led

 Lcd "Time Tracker start" ; Chr(0)

 Seconds = 30 'initial value to count down from

 Locate 2 , 1 'display labels for switches on the LCD

 Lcd "count= incr" ; Chr(0)

 Locate 2 , 7

 Lcd Seconds

 'wait for start switch, allow user to change time while waiting

 Do

 'allow user to increase count in amounts of 30 seconds

 If Wht_sw = 0 Then

 Seconds = Seconds + 30

 If Seconds > 300 Then Seconds = 30 'set max

 Locate 2 , 7

 Lcd Seconds ; " " 'add clear feature “ “

 Waitms Debouncetime 'must debounce switch

 Do 'wait for switch up

 Loop Until Wht_sw = 1

 Waitms Debouncetime 'waita little longer

 End If

 Loop Until Grn_sw = 0 'wait for start switch

 Reset Grn_led

 'countdown

 Do

 Set Red_led

 Waitms 50

 Reset Red_led

 Waitms 950

 Decr Seconds

 'display time

 Locate 2 , 7

 If Seconds < 10 Then Lcd "0"

 Lcd Seconds ; " " 'space blanks unwanted digits on lcd

 Loop Until Seconds = 0

 'beeps

 Sound Piezo , 150 , 100

 Waitms 50

 Sound Piezo , 150 , 100

Loop

End 'end program

329

23 Basic maths time
Microcontrollers only store numbers, soit follows logically that they can do maths with these
numbers.

Here is a program that makes use of some maths and some different types of variables.

23.1 Ohms law calculator

Specifications

 Pressing the first button increases the voltage in the circuit by 1 Volt
o A maximum of 24V
o A minumium of 3V
o After 24V it goes back to 3V

 Pressing the second button increases Vl by0.1V. Vl (short for Vled) is the manufacturers
voltage specification for the LED

o A maximum of 4.0V
o A minimum of 1.5V
o After 4.0V it wraps back to 1.5V

 Pressing the third button increases the current that you want by 1mA
o A maximum of 50mA
o A minimum of 1mA
o After 50mA it wraps back to 1mA

 After any button press the new resistor value is calculated and displayed
Take note here that I separate the processing from the output code by writing the two
different and separate things the micro must do; first calculate (process code) and then
display (output code).

330

331

The flowchart for the program reveals my thinking while designing the program flow.

 Again I have separated out the process code from the output code. This is an important
concept in programming; the separation of different functions.

o Even though the only time we use these two subroutines is together it is better to
separate them because they do different things. This makes the code easier to
understand and easier to recycle into other programs.

 I put the subroutines calc_new_r and display_values at the beginning of theprogram so that
they are used once. If you don’t do this then the program sits there with a blank LCD until
the user presses a button.

o Alternatively you could put in an instructions screen at the beginning that told the
user what to do and then either automatically times out or waited until the user
pressed a button to continue.

 I could use the Bascom debounce command rather than reading the switches with IF-
THEN. However I chose not to because the debounce command doesn’t allow auto
repeat (you have to let the button go before you can press it again to increase the value). I
felt that the program would be easier to use if you could just hold the button down and the
values would increase at a regular rate.

o This means however that my program needs a delay in the loop somewhere
otherwise the values count up much too quickly when a button is pressed.

o See where the delay (waitms 500) is in the program, it is in the main loop. Now the
problem with putting a 500mS delay in the main loop has been covered before. It is
that a button can be pressed and the micro can easily miss it because it might be in
the waitms 500 doing nothing.

o This delay should be moved into each switch press loop, because then it only occurs
when a switch is pressed and not at any other time. So why didn’t I do this already,
because I wanted you to learn about it again!

o If you wanted to you could write a really neat debounce command that checked the
switch and if it was held down increased at a slow rate.

 I have put the calculation and lcd drawing into the main loop rather than into each loop.
o This is redundant. What I mean by redundant is that it is put there but not doing

anything useful. This code only does something when a value changes otherwise it
just recalculates using the same values and redraws the same values on the LCD.

o There is no real reason for this, and there is little side effect from it either in this
program. If these two routines took a long time then we would have the same effect
as putting the 500mS delay into the main loop; we could miss switch presses while
the micro was busy doing nothing. However they don’t take long enough to cause a
problem. So putting them in the main loop or putting them into each subroutine isn’t
important because of speed.

o In general these would be better in the subroutines because it is better programming
practice. There is one reason why these might be better in the main loop and not
each switch press. This actually makes our program take up less room in program
memory. This is hardly noticeable (its just 4 Gosub lines that we save) in this
program but I say it because there is an important concept in programming here.

o We can reduce size of program code through strategic thinking and understanding of
how a program runs.

332

'***

'Compiler Setup

$crystal = 8000000

$regfile = "m8535.dat"

'***

'Hardware Configs

Config PORTA = Output

Config PORTB = Output

Config PORTC = Output

Config PORTD = Output

Config PINB.2 = Input 'Vin_sw

Config PINB.3 = Input 'Vled_sw

Config PINB.4 = Input 'Current_sw

'Character LCD config

Config Lcdpin=pin , Db4 = PORTC.2 , Db5 = PORTC.3 , Db6 = PORTC.4 , Db7 = PORTC.5 , E = PORTC.1

, Rs = PORTC.0

Config Lcd = 20 * 4

'***

'Hardware aliases

'inputs

Vin_sw Alias PINB.2

Vled_sw Alias PINB.3

Current_sw Alias Pinb.4

'activate internal pullups for switches

Set Portb.2 'Grn_sw

Set Portb.3 'Blu_sw

Set Portb.4 'Wht_sw

'outputs

Grn_Led Alias PORTB.5

Yel_Led Alias PORTB.6

Red_Led Alias PORTB.7

'***

'Dimension Variables

Dim Vin As Byte '3 to 24V

Dim Current_ma As Byte '1 to 50mA

Dim Vled As Single '2.0 to 4.0V

Dim R As Word

Dim String_val As String * 3

Dim Temp As Single

'Initiliase Variables

Vin = 5

Current_ma = 10

Vled = 2.2

'constants, if you use constants then it is easier to make changes to the program’

Const Vmin = 3

Const Vmax = 24

Const Vledmax = 4

Const Vledmin = 1.5

Const Imin = 1

Const Imax = 50

'define the LCD chars

Deflcdchar 0 , 15 , 8 , 8 , 24 , 8 , 8 , 15 , 32 ' res symbol lhs

Deflcdchar 1 , 31 , 32 , 12 , 8 , 8 , 32 , 31 , 32 ' res symbol with r

Deflcdchar 2 , 30 , 2 , 2 , 3 , 2 , 2 , 30 , 32 ' rs symbol rhs

Deflcdchar 3 , 17 , 25 , 21 , 19 , 21 , 25 , 17 , 32 'diode

Deflcdchar 4 , 32 , 32 , 32 , 28 , 4 , 4 , 4 , 31 'ground

Deflcdchar 5 , 32 , 32 , 2 , 5 , 2 , 32 , 32 , 32 ' circle

333

'------Program starts here --------

Cls

Cursor Off

Gosub calc_new_r

Gosub Display_values

Do

 If Vin_sw =0 Then

 Incr Vin

 If Vin > Vmax Then

 VIn = Vmin

 End If

 End If

 If Vled_sw=0 Then

 Vled = Vled + 0.1

 If Vled > Vledmax Then

 Vled=Vledmin

 End If

 End If

 If Current_sw=0 Then

 Incr Current_ma

 If Current_ma > Imax Then

 Current_ma = Imin

 End If

 End If

 Gosub calc_new_r

 Gosub Display_values

 Waitms 500

Loop

'Subroutines

Vin_sw_press:

 Incr Vin

 If Vin > Vmax Then Vin = Vmin

Return

Vled_sw_press:

 Vled = Vled + 0.1

 If Vled > Vledmax Then Vled = Vledmin

Return

Current_sw_press:

 Incr Current_ma

 If Current_ma > Imax Then Current_ma = Imin

Return

'calcultae the resistor value

Calc_new_r:

 'voltage v across R = vin-vled

 Temp = Vin - Vled

 'r=v/i

 Temp = Temp / Current_ma

 Temp = Temp * 1000

 R = Temp 'convert single to word

Return

Display_values:

 'top line

 Locate 1 , 1

 If Vin < 10 Then Lcd " " 'put in a leading zero if less than 10

 Lcd Vin ; "V" 'display Vin

 'display graphic

 Lcd Chr(5) ; "-" ; Chr(0) ; Chr(1) ; Chr(2) ; "-" ; Chr(3) ; "-" ; Chr(4)

 'display voltage

 Lcd " Vl="

 String_val = Fusing(vled , "#.#") 'trick to get 1 decimal digit

 Lcd String_val ; "V"

 'second_line:

 Locate 2 , 1

 Lcd "I="

 If Current_ma < 10 Then Lcd " "

 Lcd Current_ma ; "mA"

 Lcd " Rcalc= "

 Locate 2 , 14

 Lcd R ; Chr(244)

Return

334

23.2 more maths - multiplication

Process Notes

Issue: Multiply two numbers together
using only addition e.g. AxB=Answer

Pretty much all microcontrollers do multiplication inside
their hardware nowadays but its useful as a learning
exercise.

Algorithm:
Add A to the answer B times
e.g. 5 x 4 = 5+5+5+5

Finding the right words to describe the algorithm can be
difficult at times, you need to concise, accurate and
clear. This can be a step students struggle with.

Variables:
(memory locations to store data in)
numA – byte size
numB – byte size
Answer – word size

Choose useful names and think about the size of the
variable (a byte stores 0-255, a word 0-65535, an integer
stores -32768 to 32767, a long stores -2147483648 to
2147483647)

Flowchart:

Note the shapes of the elements:

Start and end
Inputs and outputs
Processes
Decisions

Learn the process of keeping track of how many times
something is done. A variable is used to count the
number of times a loop is carried out. In this case the
variable is decreased each time through the loop until it
is 0. An alternative is to increase a variable until it
reaches a specific value.

Within a microcontroller though it is often faster to test a
variable against 0 than some other number.

Test the flowchart with an example

Answer Num2

6 8

12 7

18 6

24 5

30 4

36 3

42 2

48 1

54 0

Does it work?
Note how the columns in the test follow the same order
as the processes in the loop.

This stage can be a little confusing and often we can be
out by 1 either way (if it is then our answer might not be
54 but 48 or 60)

If you get wrong answers after a loop check that you are
decreasing or increasing them the right number of times.

Identify the control statements to be
used.

In BASCOM there are several control mechanisms to
manage loops.

335

' SimpleMultiplicationV1.bas
$crystal = 1000000
$regfile = "attiny461.dat"
Config Porta = Output
Config Portb = Output
Config Pina.3 = Input

Dim I As Byte
Dim Num1 As Byte
Dim Num2 As Byte
Dim Answer As Word

'************************************
Num1 = 6
Num2 = 9
Answer = 0
Do
 Answer = Answer + Num1
 Decr Num2
Loop Until Num2 = 0

'************************************
Num1 = 6
Num2 = 9
Answer = 0
For I = 0 To Num2
 Answer = Answer + Num1
Next

'************************************
Num1 = 6
Num2 = 9
Answer = 0
For I = Num2 To 0 Step -1
 Answer = Answer + Num1
Next

'************************************
Num1 = 6
Num2 = 9
Answer = 0
While Num2 > 0
 Answer = Answer + Num1
 Decr Num2
Wend
End

If you copy this code into BASCOM-AVR, then save it
and compile it you can try it out using the simulator (F2).

Do-Loop Until…

For-Next…
this requires another variable to act as the loop counter,
and can either count up or count down.

While – Wend

When you run this program you will find that two of
them work correctly and two do not! You need to
understand which and fix them; so watch carefully
the values of the variables in the simulator and fix
the two that need fixing.

336

23.3 Algorithms for multiplication of very large numbers

The previous code is OK for small to medium size problems however there are much more
efficient algorithms; here are 2 alternatives.

 ‘Peasant’ Multiplication 75 x 41
75 41
37 82
18 164
9 328
4 656
2 1312
1 2625
 3075

Program:

' PeasantMultiplicationV1.bas

$crystal = 1000000
$regfile = "attiny26.dat"

Config Porta = Output
Config Portb = Output

Dim Temp As Word
Dim Num1 As Word
Dim Num2 As Word
Dim Answer As Word

Num1 = 16
Num2 = 39
Answer = 0

‘note again the use of do-loop as we don’t know
how many times the loop needs to be repeated
Do
 (Mod is used to find if a number is odd or even)
 Temp = Num1 Mod 2
 If Temp = 1 Then Answer = Answer + Num2
 Num1 = Num1 / 2
 Num2 = Num2 * 2
Loop Until Num1 = 0

End

Write down the Algorithm:
Divide the first number by 2 (ignore
remainder) and multiply the second
number by 2.
If the second number is odd add it to the
total.
Keep doing this process until after the first
number is 1.

What variables will be needed:
Num1, Num2, Total

337

 Long Multiplication 41,231 x 3,1231

41,321
x 3,131
41,321

1,239,630
4,132,100

123,963,000
129,376,051

Write down the Algorithm:

What variables will be needed:

Flowchart:

338

23.4 Program ideas - algorithm and flowchart exercises

1. In this game the first person picks a number between 1 and 10 and the other person must guess
this number in 4 or less guesses. If you play this game a few times with someone you will get a
feel for the algorithm (the process for solving the problem) . Can you write the process down?

2. This is a game played with any number of players who take turns saying a number. The first
player says "1" and each player in turn increases the number by 1, 2, or 3, but may not exceed 21;
the player forced to say "21" loses. There is a winning strategy for this game you will need to
research it or figure it out to be able to write a program that can beat a human opponent.

3. A factory fills drink bottles; it has a machine that puts the
drink bottles into cartons and full cartons onto pallets.
3A. Design an algorithm and flowchart that counts 24 bottles into
each carton and keeps track of the number of cartons.
3B. Extend this in a second algorithm and flowchart that
tracks the number of bottles and the number of cartons, when

number of cartons is over 48 then increase the number of pallets.

4. A program marks test scores and gives grades of N, A, M, or E based upon the following scores
0% to 33% = N, 34% to 55% = A, 56% to 83% = M 83% to 100% = E
Write the algorithm and draw the flowchart for this process.

5. Design an algorithm and flowchart for a program that gets a player to guess a random number
from 1 to 1000.
If correct, then display the number of guesses and start again
If incorrect then give as too high’ or ‘too low’
When the number of guesses goes over 8 the player loses

6A. a golf course watering system monitors the time and
moisture level of the ground and waters the grass in the early
evening if it is needed.
6B. the watering system comes on for 30 minutes then waits 60
minutes to measure the moisture level and comes on for a
second watering if it is below a fixed level.

7.Design an algorithm and flowchart for a program that calculates powers eg. 25 = 32 (use only
addition and loops)

339

24 Basic string variables

So far we have used constants on the display such as
lcd”Hello”.
But what if we want our text to vary e.g. different names and
addresses or different colours or different days of the week.
All computer languages allow you to store this text in a
variable called a STRING. Computers all store text in the
same way too. Ram stores only numbers so to store text in RAM we store a code for
each letter of the text string.
This table gives us the binary code for each character e.g. ‘A’ is 01000001 or 65 in
decimal.
In a program text can be displayed using the command LCD CHR(...), so to diaplay an A
LCD CHR(65).

A string is a
variable
that is a
collection
of letters
(and digits)
such as
“My name
is Fred” or
“37 Frost
Road,
Mount
Roskill”
When you
dimension
a string you
must think
about how
big it might
become
during the
time your
program
will use it,
and then
allocate
enough
memory for
it. e.g. dim
address as
string * 20

340

Below is a snapshot of the RAM from the simulator in Bascom this program.
Variables are stored in ram in the order in which they are declared in Bascom.
Dim Message1 As String * 20 (first 21 bytes in red below)

Dim Message2 As String * 20 (second 21 bytes in green below)

Dim Xposition As Byte (a single byte in dark red)

Dim Count As Byte (a single byte in dark green)

The data stored in the variable changes during the program , so after the first loop of the
program the memory looks like this above.

Message1 has ‘hello’ stored in it. You can see that Bascom has actually allocated 21
bytes not 20 as we asked for when we configured the string; this is because Bascom
puts a 0 on the end of each string in memory. The simulator conveniently displays any
viewable ascii characters stored in ram on the right hand side of its window.

Message2 has ‘there’ stored in it, again 21 characters are used.

The next byte of ram has the number 5 stored in it, this is the position on the lcd that we
want the text to appear at.
The next byte is the variable count it goes up from 1 to 3 to control the number of times
the text flashes on the LCD.

You can look up the values in the ASCII table for the above RAM, these are hexadecimal
numbers

hexadecimal binary Decimal ASCII

68 &B 0100 1000 104 H

65 &B 0100 0101 101 E

6C &B 0100 1100 108 L

6C &B 0100 1100 108 L

6F &B 0100 1111 111 O

341

24.1 Strings assignment

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4

' 7. Hardware Aliases
Sw_a Alias Pinb.0
Sw_b Alias Pinb.1
Sw_c Alias Pind.2
Sw_d Alias Pind.3
Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
Cls 'clear lcd screen
Cursor On Noblink
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Mix As Byte
Dim Firstname As String * 12
Dim Middlename As String * 12
Dim Lastname As String * 12
Dim Fullname As String * 40
' 11. Initialise Variables
Mix = 0
Firstname = "Edgar"
Middlename = "Alan"
Lastname = "Poe"
Fullname = ""

342

'--
' 12. Program starts here
Cls
Gosub Welcome
Do
 Debounce Sw_a , 0 , Welcome , Sub
 Debounce Sw_b , 0 , Mixup , Sub
Loop
End 'end program

'--
' 13. Subroutines
Welcome:
 Cls
 Lcd "Welcome"
 Lowerline
 Lcd Chr(126) : Lcd "to strings" : Lcd Chr(127)
Return

Mixup:
 Incr Mix
 If Mix =
 If Mix = 1 Then Fullname = Firstname + " " + Middlename + " " + Lastname
 If Mix = 2 Then Fullname = Middlename + " " + Lastname + " " + Firstname
 If Mix = 3 Then Fullname = Lastname + " " + Firstname + " " + Middlename
 If Mix = 4 Then Fullname = Mid(fullname , 10 , 5)
 If Mix = 5 Then Fullname = Lastname + "," + Left(firstname , 2)
 If Mix = 6 Then Fullname = Version(1)
 If Mix = 7 Then
 If Mix = 8 Then
 If Mix = 9 Then
 If Mix > 10 Then Mix = 0
 Cls
 Lcd Fullname
Return

From the help file find out how to use and then add to this program 3 of the following at
7,8,9
Instr Lcase Len Lookupstr Ltrim Left Right Rtrim Space Spc String Trim Ucase Mid

Use these to convert numbers to and from strings and display them
Format Fusing Hex Bin Hexval Str Val Split

343

24.2 ASCII Assignment

1. Copy the following code into BASCOM
2. Compare the datasheet for the LCD with the characters that actually appear on your
LCD.
3. Write the code for the decrementcode subroutine

'--
' 1. Title Block
' Author: B.Collis
' Date: 1 June 2005
' File Name: LCDcharactersV1.bas
'--
' 2. Program Description:
' everytime btn is pressed the character on the lcd changes
' highlights the use of the ASCII code
' 3. Hardware Features:
' LEDS
' 5 switches
' LCD
' 4. Program Features
' do-loop to keep program going forever
' debounce to test switches
' if-then-endif to test variables
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
' 7. Hardware Aliases
Sw_a Alias Pinb.0
Sw_b Alias Pinb.1
Sw_c Alias Pind.2
Sw_d Alias Pind.3
Sw_e Alias Pind.6

' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches

344

Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
Cls 'clear lcd screen
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Code As Byte
Dim State As Byte
' 11. Initialise Variables
Code = 0
State = 0
'--
' 12. Program starts here
Do
 Debounce Sw_a , 0 , Swa_press , Sub
 Debounce Sw_b , 0 , Swb_press , Sub
 If State = 0 Then Gosub Intro
 If State = 1 Then Gosub Increasecode
 If State = 2 Then Gosub Decreasecode
 If State = 4 Then Gosub Waiting
Loop
End 'end program

'--
' 13. Subroutines
Intro:
 Lcd "ASCII codes"
 Lowerline
 Lcd "btn A incrs code"
Return

Waiting:
' do nothing
Return

Increasecode:
 If Code < 255 Then 'max value is 255
 Incr Code
 Else
 Code = 0 'if > 255 reset to 0
 End If
 Cls
 Lcd Code : Lcd " " : Lcd Chr(code)
 State = 4
Return

345

Decreasecode:
'write your code here

Return

Swa_press:
 State = 1
Return

Swb_press:
 State = 2
Return

346

24.3 Time in a string

Previously we wrote a small program that created a very simple clock. To display the time
we put the time on the screen as hours, minutes and seconds e.g. 10:07:01

We could create a string to hold the time and display it using Lcd Timestr

$sim

'---

' Title Block

' Author: B.Collis

' Date: 14 Aug 2003

' File Name: simple clock v1.bas

'---

' Program Description:

' use an LCD to display

' Program Features:

' outer do-loop

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control

lines

'---

' Compiler Directives (these tell Bascom things about our

hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "attiny26.dat" 'the micro we are using

'---

' Hardware Setups

' setup direction of all ports

Config Porta = Output 'LEDs on portA

Config Portb = Output 'LEDs on portB

Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 =

Portb.4 , Db7 = Portb.5 , E = Portb.1 , Rs = Portb.0

Config Lcd = 20 * 2 'configure lcd screen

' Harware Aliases

' initialise hardware

Cls 'clears LCD display

Cursor Off 'no cursor

'---

' Declare Constants

Const Timedelay = 350

'---

' Declare Variables

Dim Seconds As Byte

Dim Minutes As Byte

Dim Hours As Byte

Dim Day As Byte

Dim Month As Byte

Dim Year As Byte

Dim Timestr As String * 8

' Initialise Variables

347

Seconds = 50

Minutes = 5

Hours = 14 '2pm

Day = 21

Month = 4 'april

Year = 10 '2010

'---

' Program starts here

Do

 Wait 1

 Incr Seconds

 If Seconds > 59 Then

 Seconds = 0

 Incr Minutes

 End If

 Gosub Maketime 'make a string of the time

 Locate 1 , 5

 Lcd Timestr 'display the string

Loop

End 'end program

'---

Maketime:

 Timestr = "" 'delete the string

 ‘rebuild the string

 If Hours < 10 Then Timestr = Timestr + "0"

 Timestr = Timestr + Str(hours)

 Timestr = Timestr + ":"

 If Minutes < 10 Then Timestr = Timestr + "0"

 Timestr = Timestr + Str(minutes)

 Timestr = Timestr + ":"

 If Seconds < 10 Then Timestr = Timestr + "0"

 Timestr = Timestr + Str(seconds)

Return

348

24.4 Date in a string

Here is a program segment to display the date in a string
'---

'Declare Variables

Dim Day As Byte 'e.g. 6

Dim Month As Byte 'e.g. 4

Dim Month_str As String * 3 'e.g. apr

Dim Year As Byte 'e.g. 12 means 2012

Dim Year_str As String * 4 'e.g. "2012"

Dim Today As String * 20 'a variable to store some

text

 'Initialise Variable

Day = 6

Month = 4

Year = 12

'--

'Program starts here

Do

 Gosub Makedate

 Locate 1 , 1

 Lcd Today

Loop

End

Makedate1:

 'str is a function to convert a number to a string

 Today = Str(day) + "/" + Str(month) + "/" + Str(year)

Return

This displays

Which is not what we want we want to be able to display it in either of these formats
06/04/2012 or 06 Apr 2012

On the next page you will see the code for this it needs completing

349

'---

'Declare Variables

Dim Day As Byte 'e.g. 20

Dim Month As Byte 'e.g. 4

Dim Month_str As String * 3 'e.g. apr

Dim Year As Byte 'e.g. 12 means 2012

Dim Year_str As String * 4 'e.g. "2012"

Dim Today As String * 20 'a variable to store some

text

 'Initialise Variable

Day = 6

Month = 4

Year = 12

'--

'Program starts here

Do

 Gosub Makedate1

 Locate 1 , 1

 Lcd Today

 Gosub Makedate2

 Locate 2 , 1

 Lcd Today

Loop

End

Makedate1:

 Today = ""

 If Day < 10 Then Today = "0"

 Today = Today + Str(day) + "/"

 'you complete the rest of this routine

Return

Makedate2:

 'str is a function to convert a number to a string

 Today = ""

 If Day < 10 Then Today = "0"

 Today = Today + Str(day) + " "

 Select Case Month

 Case 1 : Month_str = "Jan"

 Case 2 : Month_str = "Feb"

 'you complete the rest of this routine

Return

350

24.5 Scrolling message assignment

An alphanumeric (text) LCD is a very common output device used with microcontrollers
however they have limited screen size so a longer message must be either split up and
shown page by page or scrolled across the screen.

If the string was 50 charcters long as with the one below and the LCD was 16 characters
wide then using the mid command we could take the first 16 characters and put them on
the display then wait a bit, then get the next 16 characters and put them on the display,
and so on continuously.

In this assignment you will scroll a message across the screen. The message will be an
information message regarding a news item or weather forecast up to 200 characters in
length.

‘Declare Variables
Dim message as string * 200
Dim scroll_length as byte
Dim scroll_posn as byte
Dim forty_chars as string * 40

‘Initialise Variables
Message = “ the weather today will be …..”

Scroll_text:
 Scroll_length = len(message)
 If Scroll_length > 40 then
 Scroll_length = scroll_length – 40
 End if
 Scroll_posn = 0
 While scroll_posn < scroll_length
 Incr scroll_posn
 Forty_chars =mid(message,scroll_posn,40)
 Locate 1,1
 Lcd forty_chars
 Waitms 150
 Wend
Return

This routine scrolls the complete message once then returns
to the main loop. This makes it a very long routine to
execute (150mS times the number of characters in the
string)

Change the code so that it uses: a Do-Loop-Until structure and then a For-Next

351

24.6 Some LCD programming exercises.

These exercises will require you to manipulate the display, manipulate text, manipulate
numbers. And become familiar with the use of loops to get things done.
You need to save each version of the program separately e.g wassup_b.bas,
wassup_p.bas, wassup_a.bas.

Basic: put ‘wassup’ on the display
Proficient: Have ‘wassup’ scroll around the screen continuously
Advanced: Have the 6 letters of ‘wassup’ appear spread out over the display and then
after a brief delay move in towards the centre and in order.

Basic: calculate 2^8 and display it
Proficient: for n from 1 to 25, display 2^n on the screen, wait for 1 sec and then do the
next number
Advanced: Write you own code to calculate the square root of the answer for each of the
above answers

Basic: Display a static weather report for Auckland on the LCD
screen
Proficient: Do graphics for sunny, cloudy, wet, and snowy for your
weather report, that flash on the screen, these graphics should be
larger than a single lcd square, perhaps 2/3 lines x 4squares
Advanced: Scroll the message on and off the display and have the
graphics flash for a while, then the weather report scrolls back on
again.

Basic: Display 2 random numbers between 2,000 and 99,000
Proficient: repeat this process continuously, and also subtract the smaller from the larger
number and display the answer, have a 3 second delay between each new calculation
Advanced: Scroll the results off the display 0.5 seconds after the calculation

Basic: Create 4 different pacman graphics: one pacman mouth
open, one pacman mouth closed, one a target and the last the
target exploding
Proficient: Have the pacman move around the screen these,
staying on each square for only 0.5 seconds.
Advanced: Generate a random location on the LCD and place
the target there, have the pacman move around the screen and
when it lands on the target the target explodes and the pacman
moves on around the rest of the screen

Proficient: create ‘12TCE’ in one large font that covers
all four lines of the lcd like the wording of atmel in this
picture
Proficient: flash the message on the screen three
times, 1 second on then 1 second off after that have it
stay on for 12 seconds then repeat the 3 flashes.

352

25 Advanced power
interfaces

So far we have looked at lower power output
interfaces for the microcontroller such as LEDs and
LCDs the problem though is that we will want to add
high power things to our designs so we must know
what to use and how to use it. The learning for this
best takes place in some order, here is what I have chosen:
1. know what we can do and what we cannot do with a microcontroller output port.
2. know about power
3. know some more detail about how certain semiconductors are used and work
4. know about the output devices and their power requirements
5. know about the extra features the AVR has to help us drive those devices

25.1 Microcontroller power limitations

The microcontroller specifications we are interested in are found in the electrical characteristics
section of the datasheet for the microcontroller, here are the specs for an ATTiny461.

We are initially interested in the DC current
specification 40mA per I/O pin –that sounds great
40mA is heaps for a pin we could do lots with that.

 BUT wait – the next line says 200mA for the power
pins so we cannot draw 40mA from all 15 pins
because that would exceed the 200mA for the power
pins by 400mA (15 x 40 = 600mA)

There is more data we need to know about.

353

Two terms sink and source are used here we first need to understand these specifications.

The names sink and source describe
which way the current is going in a
circuit, either to positive or ground.
They are with repect to conventional
current (not electron current).

It was common for microcontrollers to
have different sink and soure
characteristics but nowadays it seems
more common to see the sink and
source ratings for a microcontroller are
the same (but not always).

The really important characteristic from the datasheet is in notes 3 and 4 where it states that the sum
of all currents for all ports should not exceed 60mA sink and 60mA source. So if we wanted to use all
15 pins of the ATtiny as outputs and switch them all on at the same time then we cannot sink more
than 4mA current from each pin (60mA/15pins)! So be warned!!

In the first example we will use the microcontroller to switch a backlight for an LCD on and off.

354

25.2 Power

So far the concepts of voltage and current have been introduced however when these are present a
third important aspect of circuits is present as well, that is power.

Any device that has a voltage across it and current is flowing uses energy, and therefore dissipates
this energy in the form of heat.

Components don’t like to get too hot and are rated to work only below a certain temperature. The
more energy the hotter a component gets and the more likely it is to overheat and be destroyed

25.3 Power dissipation in resistors

Power = voltage times current, P=V*I , Power is measured in Watts.
2V across a 10ohm resistor. I=V/R, I= 2/10, I=0.2A, so P=V*I,
P=2*0.2, P= 0.4W.

Resistors come in different power ratings so it
is important in a circuit to understand that the
power ratings should not be exceeded or the
component may overheat, become burnt and
have its life shortened or be destroyed.

Resistors can be bought in various ratings, on
the left are 1/8, 1/4, 1/2, 1, 5 & 10 Watts.
On the right 5 and 10 watt metal cased ones
Note that the physical size grows proportionally with the rating

V = 10V I = 2A P = V * I, P = 10*2, P=20W

V = 5V I = 0.3A

I = 200mA V = 12V

V = 100V I = 3mA

V = 100V P = 50W

V = 48V I = 20mA

A 5 Watt bulb draws 1.6A what is
the voltage?

A 12 battery supplies 20mA to a
resistor, what is the power?

What wattage resistor would you
use for 15V and 0.2A

What wattage resistor would you
use for 36V and 100mA

355

25.4 Diode characteristics

When a voltage is applied to the diode in a forward direction it is called forward bias; as this
increases there is little current until the voltage reaches 0.65 to 0.7V and the diode will conduct fully.

When voltage is applied in a reverse direction it is called reverse biased and as the voltage is
increased a point will be reached where the voltage is greater than the diode can handle the diode
will suddently conduct. In a normal diode exceeding the reverse voltage specification will generally
destroy the diode.

This graph decribes the characteristic of diode
conduction in a visual form. When the diode is
forward biased above 0.65 the diode conducts,
when it is reversed biased it will not conduct
until it safe operating voltage is exceeded. At
reverse voltages higher than that it will
probably be detroyed.

356

25.5 Using Zener diodes

The reverse conduction effect can be put to use in controlled circumsnaces and in
Zener diodes this effect is used to make small regulated power supplies.

Note the symbol for a zener is different to a normal diode and shows the knee and
avalanche effects in the symbol with the angled line at the cathode end.

If we want to make a small power supply for
a common circuit (5V) and we find a 20V dc
power pack we can use a zener diode.

The first calculation is simply the voltage
across the Resistor VR = Vin - Vout

We must know what load the rest of the
circuit presents to the power supply. We
don’t need to draw the rest of the circuit to
help us we can represent it as a resistor
RLoad e.g. a small microcontroller circuit
might draw 150mA (0.15A).

The current though the load will be 150mA, a zener requires some small current to work e.g. 5mA, so
the total current will be 150mA + 5mA – 155mA (0.155A).
Using Ohms law the value of R will be V/I = (20-5.1)/0.155 = 96ohms.

The issue however with zener circuits is not so much the voltage and resistance calculations it’s the
power calculations.

We assume worst case so the power the resistor has to dissipate is V x I = (20-5.1) x 0.155 = 2.3W
so we would use a 5W resistor, not a usual 400mW one we would find in the workshop!
For a zener diode, power is also factor and worst case will be when the load draws no current.
Power = V x I = 5.1 x 0.155 = 0.79W so a 1W zener would be used (not a usual 400mW one).

Vin Vout VR = Vin - Vout ILoad IZener Itotal R = VR/Itotal PR = VR x Itotal PZener = Vout x Izener

20 5.1 14.9 0.15 0.005 0.155 96 2.3W 0.79W

12 5.1 0.08 0.005

24 5.1

357

25.6 How diodes work

A diode is made from silicon (a semiconductor). Semiconductors have more electrons in their outer
shells than conductors. To the silicon other materials (impurities) are added, these other materials
have either more or less electrons in the outer shell. A diode is made from a piece of silicon which is
doped with both N-type and P-type impurities. Knowing how a normal diode works will help you
understand the basics of how an LED gives off light.

One part of the silicon has N-type impurities added (slightly
more conductive), in the other part P-type impurities are
added (slightly less conductive).

When no
voltage is
connecte

d to the diode there is a region in the middle where some
electrons flow over and the effect is cancelled out (the
depletion region).

When a large enough voltage is applied to a diode (about
0.4v to 0.6V) electrons will flow from the negative to the
positive. This is called forward bias. In the process the
depletion region disappears.

When the battery is connected back to front the diode is "reverse
biased" and the depletion region in the middle gets larger, so

electrons cannot flow. This explains why diodes conduct
only when connected into a circuit the right way
around.

358

25.7 How does a LED give off light?

In an LED when electrons move from the N side to the P side photons
are released.

Photons are released whenever electrons move from one shell
level in an atom to another. In an LED the electrons move from
the N to the P and also change levels within the atomic structure
at the same time, therefore releasing photons.

Note that the voltage required for an LED to conduct is much
greater than a normal diode. Typical values range from 1.8V to
3.6V, and like an ordinary diode they only work in one direction

LED Colours

In an LED different colours are achieved by using different types of impurities.

Light Emitting Diode Colour Variations

Color Name Wavelength
(Nanometers)

Semiconductor
Composition

Infrared 880 GaAlAs/GaAs

Ultra Red 660 GaAlAs/GaAlAs

Super Red 633 AlGaInP

Super Orange 612 AlGaInP

Orange 605 GaAsP/GaP

Yellow 585 GaAsP/GaP

Incandescent
White 4500K (CT) InGaN/SiC

Pale White 6500K (CT) InGaN/SiC

Cool White 8000K (CT) InGaN/SiC

Pure Green 555 GaP/GaP

Super Blue 470 GaN/SiC

Blue Violet 430 GaN/SiC

Ultraviolet 395 InGaN/SiC

359

25.8 LCD Backlight Data

In the datsheet for a 4 line LCD, the LCD typically draws 2mA with the backlight off and 72mA with it
on, so the backlight requires 70mA, it also requires 4.7V.

Although we don’t have a schematic for the backlight we can make a good guess at what the circuit
for it might look like. A typical LED requires 2V to 2.5V to drive it, so if the backlight LEDs require
4.7V we can safely assume that there are 2 LEDs in series. As the backlight LEDs draw 70mA in
total and a typical LED is up to 20mA we could guess at either 3 or 4 sets of LEDs in parallel.

As the backlight LEDs draw 70mA it is not possible to drive them directly from a microcontroller I/O
pin, we need another control component in between.

360

25.9 Transistors as power switches

There are many different types of transistor and the
BJT has already been introduced so we will investigate
it as an intermediate stage of switching between the
microcontroller and the backlight.

 BC547

Type NPN BJT type

 Case T092

IC (mA) 100 mA The maximum current that we can control

Vce MAX 45 V The maximum voltage we can apply to the circuit

 hFE (gain) 110-800 The amplification factor Ic/Ib

 PTOT (power) 500 mW The maximum power that can be dissipated by the device

What we know:
The backlight is a bunch of LEDs
requiring 4.7V and 70mA.

You need to know:
A transistor when it is completely
switched on will have a Vbe of 0.7V
and a Vce of 0.3V

The current to the LED backlight comes
from the transistor and is the same as Ic,

(collector current) We want this to be
70mA.

To get and Ic of 70mA we need some
current through the base Ib.
The relationship between Colector and
base current is called gain or hFE. Gain or
hFE = Ic / Ib

I b = IC / hFE = 70/110 = 0.6mA
The current in the base is the same as the current in the the resistor R from the microcontroller.
Using ohms law R = V/I = (5-0.7) / 0.0006 = 7k166 ohms
A suitable value of R would be lower than 7K to make sure that at least 0.0006A flows. So we would
choose a convenient 4k7. In fact it would be fine to go lower or a bit higher.

Now the hidden calculation is power, the transistor has a voltage of VCE across the emitter and
collector. This will always be about 0.3V for a BJT transistor when it is fully switched on.
Power = V x I = 0.3 x 70mA = 0.3 x 0.07 = 0.021W = 21mW.
Looking at the specifications in the above table the BC547 can dissipate 500mW and we want it to
dissipate 21mW, so it should work fine.

This fine for a 70mA, 4.7V backlight but more powerful devices will require bigger transistors. The
problem with bigger transistors however is that you have to drive them with a lot of current from the
microcontroller which cannot provide a lot of current!! So…

361

25.10 High power loads

When we have a load that requires higher power we may
need a higher voltage supply and more current.

Here is an LED based traffic light, it has 168 LEDs and
requires a 12V supply voltage.

1 2 3 4 5 6 7 8

Load Ic hFE Ib Vbe R Vce Ptot

Green
300mm
traffic light
12V 14W
(168 LEDs)

I = P / V
= 14/12
= 1.16A

BC547 =
110

Ib = Ic / hFE

=1.16/110
=0.011A
= 11mA

Now 11mA from a microcontroller sounds ok but lets review the datasheet for the AVR.

25.11 AVR Power matters

The datasheet might initially lead you to believe
that we can draw 40mA from an I/O pin. However
there is an absolute maximum rating of 200mA
from the power supply pins, so if we were to
draw 40mA from 5 I/O pins then we would have
reached the maimum for our device.

But theres more…

362

In note 4 and 5 above from the datasheet there is a maximum rating of sinking 60mA and sourcing
60mA total from all I/O ports. This is in effect 120mA in total.

Sink current is when the current is from ther AVR
I/O pin to Vcc (a low or 0 turns on the load)

Source current us when the current is from
ground to the AVR I/O pin (a high or 1 turns on
the load)

So there are significant limits to what we can drive from our AVR. This is why the current has been
limited to a few mA by a 1K resistor with the all the multiple LED circuits so far, so that we do cannot
stress the AVR.

So back to our LED traffic light, we could drive a few of them from our AVR but not many. It would be
better to use an alternative.

363

25.12 Darlington transistors - high power

A darlington transistor is two transistors inside one
package like this BDX53C

This device has a gain of at least 750 so
to get the maximum current of 6A out of it
will require only 6/750 = 0.008A = 8mA
into the base.

364

The BJT NPN transistor has been
replaced by an NPN Darlington
transistor.

1 2 3 4 5 6 7 8

Load Ic hFE Ib Vbe R Vce Ptot

Green
300mm
traffic light
12V 14W
(168 LEDs)

I = P / V
= 14/12
= 1.16A

BDX53C
hFE=750

Ib = Ic / hFE

=1.16/750
=0.0015A
= 1.5mA

2.5V =VR / Ib
= (5-2.5) / 0.0015
= 1,667 ohms
 Use 1k5

2

= Vce x Ic
= 2 x 1.16
= 2.32W

The BDX53C can dissipate 60W power, however it will heat up at the rate of 70 degrees per watt that
it dissipates.

The BDX53 will then heat up by 2.32 x 70 = 162.4 degrees over and above ambient temperature.
Ambient temperature is the temperature of the piece of equipment and is influenced by the air
temperature other components that generate heat. This exceeds the temperature range of the
device which is 150 degrees. So we should use a heat sink.

365

25.13 ULN2803 Octal Darlington Driver

This really useful IC has 8 darlington transistors built into it. Which makes it really useful for
connecting to the 8 pins of one port on a microcontroller.

In this circuit for one I/O of the ULN2803 you
can see the protection diodes on both the
input and the outputs.

The protection diodes go to pin 18 which must be connected to the
power for loads you are driving.

This device is great for connecting high power loads such as relays, solenoids, light bulbs
Each transistor can switch 500mA each however you cannot have more than 1W per output and a
total of 2.25W per IC (all 8 outputs) at once.

366

In this example we want to drive 8 bulbs, bulbs are not socommon but theywillserve as an example of
power calculations.

1. Power for each transistor
The transistor will have to supply 0.15A, when it is turned on (saturated)
The voltage across the Collector to Emitter will be 1.1V (worst case)
So the power for each transistor will be P = V x I = 1.1 x 0.15 = 0.165W

2. this measn if we want all 8 bulbs on at once we will have
P = 8 x 0.165 = 1.32W

3. We can do this as the specification for each transitor and for the the whole package have not been
exceeded.

4. We will need a power supply capable of delivering 12V and 1.2A (8 x 0.15A) plus other power
requirements of the circuit.

367

25.14 Connecting a FET backlight control
to your microcontroller

The LCD requires six I/O lines to be used on the micro to
control the data to it plus 1 more to switch the backlight

368

25.15 FET backlight control

The FET (field effect transistor) is different to the
more familiar BC547 which is a BJT (bipolar
junction transistor).

 A FET’s output current is controlled by the
voltage in and there is almost no current in the
gate of the FET from the microcontroller
meaning a microcontroller can control large
FETs directly.

 Generally FETs require about 10V to drive the gate but low voltage versions called ‘logic’ FETs are
available. The 2N7000 is a logic MOSFET, capable of driving 200mA loads and dissipating 1W of
power at 25 degrees Celsius AND can be controlled directly by 5V (a logic 1) from a
microcontroller

 The power dissipated by a FET is much lower than a BJT. It is measured by multiplying the
current flowing by the Rds value (5ohms for a 2N7000, but typically milliohms for high current
FETs)

2N7000 – ‘N channel enhanancement-mode
MOSFET’

The FET can be connected directly to the
microcontroller output pin without the 100k
resistor; however we prefer to connect it
with a high value resistor.

It is good practice to connect the gate to
ground with a high value resistor. The
reason being that the gate is so highly
sensitive that if the micrcocontroller pin is
configured as an input it will easily drift in
voltage and the FET might turn on due to
noise nearby in the circuit (and so will the
device you have connected to it). This is the
case when an AVR is turned on and before
any config statements have been run in
your program.

In worst case the power dissipation will be
P=V x I and V= I x R so P = I x R x I
P= I2R = 0.07 x 0.07 x 5 ohms
P = 0.0245W = 24.5mW
So a lot less power is wasted by using a FET rather than a BJT.
Note the 5 ohms in the datsheet is a maximum value for RDS, looking through the datsheet shows
that it is typically going to be around 2 ohms, but we used 5 as a worst case scenario.

369

26 Advanced Power Supply Theory
Every circuit needs high quality power

Over time a significant number of
students have developed power

supplies and breadboard
prototyping centres for their own

use

Some have been built into
existing items like this toolbox

Some included microcontroller
based control of the voltages

A range of various materials are

used
Sheet metal

Acrylic
MDF
Pine

Plywood

Sketchup plays a significant
role in helping students

visualise and plan the final
product

370

26.1 Typical PSUs

Typical power supply units and their characteristics/features

Input voltage range: 230V AC 50Hz
DC Output range: 5 - 15 Volt
Output Current:10 amp DC (no variable limit)
Analog Amp & Volt Meter
270mm x 200 mm x 120mm

Input Voltage: 230-240V AC. 50Hz
Output Voltage: Variable 0 to 30V DC
Variable Output Current Limit: 0 to 2.5A
Load regulation (0-100% load): 10mV
Line regulation (240V +/-5%): 10mV
Digital Volt and Ammeter Accuracy: 0.7%
Mains overcurrent protection: 1A resettable circuit breaker

Output Voltage: 3-15V DC or fixed at 13.8V
Output Current: 40A regulated (no variable limit)
Ripple & noise: 10mV rms
Load regulation: 230mV @ 0 - 100% load.
Measures 220(W) x 110(H) x 300(L)mm.
Weight 3.5Kgs. – digital volt and amp meters

Input voltage range: 230V AC
DC Output range: 5 - 15 Volt
Output Current:10 amp DC (no variable limit)
Analoge Amp & Volt Meter
270mm x 200 mm x 120mm

Input Voltage:240VAC10%/50Hz
Output Voltage: 0 - 30 Volts DC
Output Current: 0 - 5 Amps
Line Regulation: ≤0.01%+3mV ≤0.2%+3mA
Load Regulation:≤0.01%+2mV ≤0.2%+3mA
Ripple & Noise: ≤0.5mVrms ≤3mArms
 Display Accuracy:Voltmeter(0.2%Rdg+2digits), 2.5% Full Scale

Silicon Chip Magazine power supply kitset
Two independently switched outputs: 5V,12V &15V

Voltage outputs: +1.25V to 15VDC @ 0.25A.
–1.25V to –15VDC @ 0.25A.
+5VDC @ 0.25A.
+30VAC center-tapped to 15VAC @0.25A.
Various switches, LEDs, potentiometes, breadboard for testing circuits

WOW: a power supply and breadboard prototyping super kit
Extra features include: tools storage, multimeter

The specifications we need to know more about are highlighted above: Input Voltage range and
frequency, variable output voltage range, output current limits, ripple, line regulation and load
regulation.

371

26.2 The four stages of a PSU (power supply unit)

Most modern electronic devices require fixed and stable power supply voltages, to achive this we
follow a recommended design.

In NZ we use an AC (alternating current) mains
power supply system which delivers 230V to
our homes.
The 230 is an RMS (root means square) value.
Although it is 230VRMS it peaks at about 230 x
1.414 (+325V and – 325V).

Of course we cannot use 230V directly in our projects as it is unsafe to so so. We use a transformer
to convert the voltage to a lower value. A transformer is 2 (or more) insulated coils of wire wound on
a laminated metal core.

The ratio of the number of turns between the primary and secondary windings determines the voltage
out put. If we want 23Volts out of our transformer we would have 1/10th the number of windings on
the secondary as we have on the primary.

26.3 Stage 1: step down transformer

372

Wiring up our own mains transformer within a project is complex and requires a specific process to
be followed thoroughly. This circuit looks simple enough it shows the switch, fuse, mains connector
and primary of the transformer all in series.

However the actual product requires very specific wiring and earthing as well as testing by a
registered person before it is used.

In this power supply DH covered the mains area with a plastic cover, then we had it certified by an
electrician before mounting and testing the rest of the low voltage circuits.

373

26.4 Stage 2: AC to DC Conversion

The second stage of the power suppy requires the conversion of AC to DC because all the circuits
we use require DC voltage. A diode rectifies the AC .

A half-wave rectifier (a single diode) blocks the negative voltage. This is however very inefficient use
of a resource as half the power is never available for use – this means we might buy a 100VA
transformer but only be able to use 50VA – translrmers are expensive so this is a waste of money.

A more efficient use of the power is to use a full wave rectifier, where there are 4 diodes.
The output power of the bridge rectifier is almost all the power going into it not half of it.

When the mains voltage is one polarity only two diodes conduct.

When it is the opposite polarity the other two diodes conduct. The output however is always the same
polarity

374

26.5 Stage 3: Filtering AC component

We need a steady DC voltage from our power supply, to assits we
will use a capacitor. A capacitor is made of two metal plates
separated by an insulator (called a dielectric). The characteristic of
a capacitor is to store charges (electrons). If there is no voltage on a
capacitor and a voltage is applied a large flow of charges (current)
will occur, when the applied voltage is removed the capacitor will
release these to the circuit. In our Power supply circuit the voltage
rises and falls 100 times per second, while the voltage is low the
charges stored in the capacitor will be used by the circuit, while it is

high the charges used by the circuit will be supplied by the rectified AC which will also charge the
capacitor. In a power supply we typically use very large capacitors e.g. 2200uF or 4700uF.
These capacitors are polarised, so must go around the right way – they can explode so get it right!
We also need to make sure that the voltage rating is more than the peak volate of the transformer. So
a 13VAC transformer will have a peak output of 13x1.414 = 18V. Capacitors come in standard values
16V is a common value as is 25V. A 16V capacitor will not do, here a 25VDC one was used.

26.6 Stage 4: Voltage Regulation

The ‘DC’ coming out of the filter section of the PSU is not completely smooth and it has a slight ripple
component due to capacitor discharging and recharging. As the load changes the ripple increases
(the load is the circuit we connect to the PSU and we show it as a resistor in the circuit below). This
means that the voltage can go up and down as the load changes, something that happens a lot in
digital circuits as things switch on and off.

Also we want 5V for our microcontroller, so an unstable 16-18V DC supply is too high.

375

From the portions of the datasheets below for the ATMega16 and the ATTiny26 we can see that they
need around 5V for the standard higher speed devices and 3V would be fine for the type L devices
Voltages that exceed 5.5V will very like damage the microcontroller. Every now and again there is a
loud POP in the classroom and the smoke inside a microcontroller is released as another student
forgets to check the voltage on the bench power supplies we are using and tries to run their micro at
30VDC!!

The output voltage must be controlled by some form of voltage regulator circuit. Here the regulator is
a series pass transistor controlled by an opamp and transistor. The opamp compares the difference
between the output voltage (Vfeedback from the voltage divider) and the reference voltage (Vref from
the zener diode). It increases or decreases the drive voltage to the series pass transistor to keep the
two input voltages equal.

376

Here is a common commercial device to do just that for us. It is the 7805 (or LM340T-5).
It comes in various package styles depending upon its use or its current limiting characteristics.

T092

TO220

TO5

SMD (surface
mount device)

There are also different voltage ratings available e.g. 7808 (8V), 7812 (12V), 7815 (15V).

Inside the 7805 IC
there is a
reasonably complex
circuit.

The components of
interest however
can be identified
easily they are R1
and D1 (Vref), Q16
(series pass
transistor), R20 and
R21 (Vfeedback).

Transitors Q1 and
Q18 form the main
part of the
comparator circuit.

This circuit has a
current limit built
into it, R16 is a
0.25ohm resistor
and is used to
detect the amount
of current flowing,
more about that
later.

377

A 7805 can be added easily to our circuit. But we must know about it so that we use it correctly.
The datsheet for a 7805 can be downloaded from the internet, here are some sections from it.

What is the maximum input voltage? _________________

What do you think storing the device below -65 degC might do to it?

If it got hotter than its maximum operating temperature of _______ degC what might happen?

What is the typical output ?________________,

the maximum output voltage?_____________

the minimum output voltage? _____________

From the small section above we can determine what the minimum input voltage is that we can use
to get 5V out. This spec is called dropout voltage and it is the voltage difference between the input
and output that is required to make sure the 7805 operates correctly.

To get 5V out we need at least ____________ input voltage

378

26.7 Ripple (decibel & dB)

Although the filter capacitor reduces the ripple voltage we do not want any of it getting onto the power
pins of our microcontroller. That sort of thing really upsets fast switching digital and microcontroller
circuits and also can create hum in audio circuits. The 7805 rejects ripple, the datasheet gives its
specification as 80dB (decibels).

A Decibel is a measure that is not linear but logarithmic in scale .
+3dB means 2times the power (or if a voltage is specificed ,1.4 times the voltage)
-3dB means half the power (0.71 x the voltage)

+6bB means 4x the power (2x the voltage)
-6dB means ¼ of the power (1/2 the voltage)

+80dB means 100,000,000 x the power (10,000 x the voltage)
-80dB means 1/100000000 of the power (1/10000 the voltage)

80db from the datasheet means it reduces ripple output to 1/10000 of the ripple voltage coming in.

If the ripple voltage was 100mV (0.1V) coming in it would be ______________ coming out of the
7805 (not much!)

The power supply units looked at earlier had ripple specifications of 10mV that means that if we set
our PSU to 5V then the voltage will fluctuate from 4.990V to 5.010V at the rate of 100 Hertz (100
because we full wave rectify the 50Hz AC voltage)

Often a datasheet will give typical applications for a device

The note about the two small capactiors is very important when designing a 7805 circuit put them real
close to the IC (within a few millimetres)

As an aside I always use at least a 10uF electrolytic capacitor on the output of the 7805 if I will
be using the ADC circuit of the ATMEL AVR, as this makes the ADC readings more stable!

379

26.8 Line Regulation

Line regulation refers to the line input voltage varying. In our case we have a nominal (typical) mains
voltage of 230V AC. This voltage however fluctuates as people turn applicances on and off,
expecially large power users. So these changes in line input voltage should not effect the output
voltage.
One of the power supplies above quoted Line regulation (240V +/-5%): 10mV this means that if the
mains voltage varies by up to 5% either side of 240V then the output voltage will change by no more
than 10mV. Another one quoted Line Regulation: ≤0.01%+3mV so when the input AC voltage varies
0.01% of that variation + 3mV may be passed through to the output.

The 7805 Line regulation from the datasheet is 10mV, which means that if the input DC voltage
changes then the output voltage will change no more than 10mV.

26.9 Load Regulation

Load regulation is perhaps the most important specification for our power supplies as we want the
output voltage to be constant while our circuits current load changes (i.e. we trun LEDs, motors etc
on and off). Three of the power supplies had specifications for load regulation.

Load regulation: 230mV @ 0 - 100%
Load regulation (0-100% load): 10mV
Load Regulation:≤0.01%+2mV

The first one is the worst upto 230mV variation, so a 5V setting might drop down to 4.770V, the
second at 10mV means that the 5V would drop down to 4.990V and the last one by a little more than
2mV.

The 7805 has a load regulation specification of 10mV typical and a maximum of 25mV. So it is really
good!

380

26.10 Current Limit

Although we regulate voltage we seldom regulate the current that a circuit can draw. Using ohms law
we can work out what the different currents are for circuits below

In this circuit 5V into a load of
100 Ohms
I=V/R = 5/100 = 0.05A or 50mA

In this circuit 5V into a load of 10
Ohms
I=V/R = 5/10 = 0.5A or 500mA

In this circuit 5V into a load of 1
Ohms
I=V/R = 5/1 = 5A (!!!!!!!!!)
NO it wont work, sorry

I=V/R =5/0, don’t try this on your
calculator because it generally
gives E, which students
sometimes think is infinity so
infinite Amps!

The 7805 has a built in current limit circuitry to protect itself

It can deliver no more than 2.1A maximum. HOWEVER, current limit is a function of the whole circuit,
if your 9VDC coming in is provided by a plugpack that has a 500mA output rating then you will only
ever get 500mA max (trying to draw more may kill the plugpack) If it is coming from a 10A power
supply then it will allow you to draw an absolute max of 2.1A if you put a short circuit on the 7805.

381

What exactly is current limiting and why is it important?

Often batteries are used to test circuits. This is fine if the circuit is working well. The circuit under test
may be drawing 120mA so it can be thought of as a (R=4.8/0.12 =) 40 ohm equivalent resistance.

If however you make a mistake with your breadboard or pcb and the circuit becomes 0 ohms then a
problem can occur!
In fact explosions can occur!!!

Batteries are not perfect but they are very good; they
have a small internal resistance, which will limit the
current. I = V/R = 4.8/0.15 = 32A!! This internal
resistance depends on things like temperature and
the chemical reactions going on and could even be
lower.

In the class we have had batteries explode into fire. When testing circuits if it doesn’t work check the
temperature of your batteries, if they are very hot disconnect them and if they are really hot put them
outside immediately; as they may explode even after having been disconnected as they can continue
to heat up.

Check out the internet for videos and pictures of exploding batteries if you don’t believe!

382

How does current limiting work?

The 7805 current limiting circuitry from the datasheet (above), this has been reduced down to a basic
block type diagram in the circuit below.

Between the input and output of the 7805 is transistor Q16 and resistor R16 (0.25ohm). The current
that the 7805 supplies to the circuit goes through the 0.25ohm Current Sense (Isense) resistor.
This resistor will develop a voltage (potential difference) across it which is directly proportional to the
current (V = IxR - ohms law - as current increase so does voltage).

V = I x R

At 50mA
V = 0.05 x 0.25 = 0.0125V

At 100mA
V = 0.1 x 0.25 = 0.025V

At 1A
V = 1 x 0.25 = 0.25V

At some point the current sensing transistor Q14 will turn on and shut off the main transistor Q16.

383

26.11 Power, temperature and heatsinking

Using this diagram we can work out some power calculations for our 7805.

If the 7805 needs to drop 4V at 0.05A, then it will have to dissapate 0.05A x 4V watts of power

P=VI = 0.05 x 4 = 2Watts. In doing this the 7805 will act as a heater and get warm.
This is where the specifications for a device become very important, as we do not want to exceed the
power ratings or damage may occur. Damage is not really a problem with the 7805 as it is
“essentially indestructible” as the datsheet says. However it will shut itself down if it gets too hot.

The ‘die’ is the internal silicon wafer (slice) that the circuit is built on; if this goes over 150 °C the
device will shut itself down. The 7805 is able to radiate heat however it has only a small surface area
and so it is not very efficient at getting rid of heat. Its warms up at the rate of 54 °C/W . The
specification of interest is Θj-a (theta junction to ambient).

If in the example we want to dissapate 4W then the junction temperatire will rise to 4 x 65 or 260 °C,
clearly the device will shut itself down if this were to happen as it would get too hot.

So we bolt a heatsink to the 7805. The specification of interest becomes Θj-c (theta junction to case)
which is 4°C /W

384

Each part of the chain of dissipating heat has a negative impact, the lower the overall number the
better heat can be dissipated. A small heatsink might be 20°C/W, in this case the one shown is
17°C/W. A large heatsink might be 4°C/W.

If we use a mica insultor between the 7805 and the heatsink and thermal paste (to exclude any air
from the join) it adds 1°C/W.

Our total is now 4+1+17 = 22°C/W. Much better than 54°C/W.
At 4W our junction temperatire will be 4*22 = 88°C, which is below the max of 150°C .

If we raise the input voltage to 16VDC, and we want to draw 1A from the 7805.
We will have 16-5 = 11V across the 7805 and it will have to dissipate 11V x 1A = 11Watts.

At 22 °C/W, that means 11W x 22 = 242°C.

To be within range of our 150°C we will have to have reduce the rating to 150/11 = 13°C/W.

If we have a heatsink of 8°C/W it will be OK, but that is a reasonable size heatsink.

385

26.12 Typical PSU circuit designs

26.13 PSU block diagram

26.14 PSU Schematic

In
this circuit the thick lines indicate higher current paths, which will require thicker tracks on the PCB
Note that there is no current limit apart from the 7805 and LM317 internal current limits (at least that’s
better than 30+amps direct from batteries). Note the three GND connections, these points are
connected as they are all called GND, there is no need to add wires to connect the points.

7805

LM317

Fixed 5V

Variable VoltageTransformer
Rectifier
& Filter

Regulators

386

Initially layout your components in a
logical way
Here a small heatsink was used in the
centre of the PCB and the two
regulators were mounted on either
side of it. The components that
belonged with each part of the circuit
were put on each side of the heatsink.
The capacitor and voltage regulator
were added to one end f the board.
The wires to connect to other
components were all placed around as
few sides of the board as possible,
and as close to the edges as possible.
3.5mm mounting holes were placed in
the corners.

Next the tracks were started. The
ground was laid first around the
outside of the board and using 0.086in
thickness, this is the thickest track
possible to connect to the voltage
regulators as their leads are 0.1inch
apart.

There is another consideration here,
this is a powersupply designed to
deliver current to other ciruits, we
must know about the current limits of
the PCB tracks. This is all to do with
resistance and heat. A copper track
although a conductor still has a finite
resistance and will burn up if too hot
(too much current flows through it).
We use PCB which has 2oz (ounce)
of copper per square foot. This
equates to 0.0028 inch thick tracks.
A 0.086 inch wde track can carry
about 3.5A and will increase in
temperature by about 10 degrees C.
(which is ok).

In an effort to reduce electrical noise
and any voltage fluctuation a large
ground plane is added to the board.
Type ‘polygon gnd’ into eagle and set
the values for width, isolate and
spacing for 0.032 inch. Then draw the
polygon around the edge of the board
and redraw the ratsnest to fill in the

polygon. A ground plane also reduces the amount of copper that will need to be etched, saving on
chemicals.

387

Insulating of heatsinks and voltage regulators

Most devices need insulating from heatsinks, because the metal tab of the IC package os electrically
conneted to one of the legs.

In the 7805 the metal tab is electrically ground (or 0V),
In the LM317 variable voltage regulator the metal tab is connected to Vout, the variable voltage.
If we were to bolt them to the heatsink without insultating them the variable voltage would short out to
ground. When we have a 7805, its case is already ground sowe don’t need to insulate it, but the
LM317 still needs insulation.

388

26.15 Practical current limit circuit.

From the LM317 datsheet there is an application to build a current limit. The current can be
controlled by using different values of resistor (a potentiometer could be fitted if it was a special high
power one). Check out the datasheet for other applications for the LM317.

In this circuit below the current can be set using two values for R1 and R2 and a switch to select
either or both (giving three different preset values)
If 1R2 ohms gives 1 amp limit
What value of R would give a current limit of 200mA?

389

In this layout the 3 voltage
regulators are mounted on
the very edge of the PCB.

This means that we can
solder them onto the PCB
and then heatsink them easily
against a large heatsink or a
metal case.

390

26.16 Voltage measurement using a voltage divider

Having developed a variable power supply it is important to be able to measure the voltage it is set
to. We can monitor the output of a power supply by reading the voltage with an ADC pin on the
microcontroller and converting this to voltage display on the LCD.

In the block diagram above the voltage divider divides the output voltage of the PSU down to a
value within the range of the ATTiny26 ADC port and uses that to measure the voltage.

The AVR has an internal reference voltage we can use. It is 2.56 volts so you must make sure that
the voltage into the ADC cannot exceed 2.56V so some ohms law and resistance calculations are
necessary.

If the maximum voltage out of the PSU is 20V then a ratio of 10:1 for the resistors would be
satisfactory
The following shows what the voltage (to 1d.p.) would be for 2V, 5V and 20V in along with the
reading for the ADC.

7805

317
Variable

DC output

LCD

DC input

Voltage
Divider

ADC

Attiny

GND/OV

GND/OV

10k

1k

5V

= 0.5 / 2.56 x 1024
=182

ADC reading

10k

1k

2V

ADC reading =
= 0.2 / 2.56 x 1024

=73

10k

1k

20V

ADC reading

= 1.8 / 2.56 x 1024
=727

V = 20 x 1/11 =1.8VV = 5 x 1/11 =0.5VV = 2 x 1/11 =0.2V

391

We used the Attiny461-20PU for this project. ATMEL like to change models of its microcontrollers all
the time, we don’t mind this as each time they do they tend to get a little better for the same cost!
However it does mean keeping up to date with the micros specifications. The ATTiny461 has 11
ADC inputs (although we cannot use ADC10 because it’s the reset pin and we need ot for
programming).

This computer program simulates the variable power supply, the action of the voltage divider and
the conversion process within the microcontroller

392

26.17 Variable power supply voltmeter program

'Title Block

‘Name: B.Collis and Anka

'Date: May 2010

'File Name: Voltmeter.bas

'--

'Program Description:

'use ADC to read voltage from output of a voltage divider

'convert adc value to one that matches the voltage into

the voltage divider

'use an LCD to display value of the voltage

'--

'Compiler Directives

$crystal = 1000000 'speed of operations

inside the micro

$regfile = "attiny461.dat" 'the micro we are using

This program was developed to display the voltage of the variable
powersupply, Anka (year11) and I worked on it together, since then
he has taken his program to a further stage to incorporate more
features such as audible warnings and other visual warnings.

'--

'Hardware Setups

Config Porta = Output

Config Pina.7 = Input

Initially we configure all the pins on port A as outputs, however the
voltage divider is connected to A.7 so it must be configured as an
input.

Config Lcdpin = Pin , Db4 = Portb.3 , Db5 = Portb.6 , Db6

= Portb.4 , Db7 = Portb.5 , E = Portb.2 , Rs = Portb.1

Config Lcd = 20 * 2 'configure lcd

connections

Config Adc = Single , Prescaler = Auto , Reference =

Internal_2.56_extcap

Start Adc

The first line sets up the analogue to digital conversion circuits
within the AVR. In terms of systems knowledge this is is an
example of sub systems where students must be familiar with the
I/O characteristics and function of a device but not the detail of its
internal operation. The Attiny26 has 11(though we can only use 10)
ADC inputs. AN ADC requires an input voltage and a reference
voltage against which to compare the input voltage. It has different
voltage references we can use, external, 1.11V or 2.56 internal. In
this case we are using the internal 2.56 volt reference with a 0.1uF
capacitor on AVCC (pin 15). The ADC reading will be in the range
of 0 to 1023, where a 0 means 0Volts and 1023 means the same as
the reference voltage.

393

'initialise hardware

Cls 'clears LCD display

Cursor Off 'cursor not displayed

No need to display the cursor on the LCD

'---

'Declare Constants

'Declare Variables

Dim Adc_in As Word

Dim Voltage As Single

Dim Dividor As Single

Dim Volts As String * 5

'Initialise Variable

Dividor = 32.6255

Variables store data, here we need a variable to store the value we
read from the ADC input. This must be a word sized variable as it
may store up to 1023 (remember a byte can only store upto 255).
We want to display decimals so we must use a single or a double,
we do not need the precision of a double so we use the single.
We want to display the number on the LCD as well. We could use
the same variable voltage however it will give us loads of decimal
places so we will convert it to a string and then format the string so
we need a varibel that can hold a string.

'--

'Program starts here

Do

 Adc_in = Getadc(6)

 Voltage = Adc_in

 Voltage = Voltage / Dividor

 Volts = Fusing(voltage , "#.##")

 Locate 1 , 1

 Lcd Volts ; "V" ; " "

Loop

End

1. Read the voltage into the word variable adc_in.
2. Put this number into the single variable
3.This number will not be the voltage but a number that changes in
relation to the voltage so we must convert it into a number that is
the same as the voltage.
4. This will be a number with loads of decimal places so we conver
it to a string
5. the string is formatted to have only 2 decimal places.
6. position the cursor
7. display the string version of the voltage, the letter V and then a
couple of blank spaces on the LCD.
8. repeat the process all over again

394

27 Year11/12/13 typical test questions so far
Capacitors
What is the value of the small yellow Capacitor in the microcontroller circuit- in pF? nF? uF?
What is the number written on it and what does it mean?
Why is it used?
What does polarised mean?
What are the two ways of knowing how to put an electrolytic capacitor into the circuit
correctly?
Resistors
Calculate the value for a current limit resistor with a 12V battery and an LED drawing 2mA
Select the closest value we have in class that you could use.
If you could use 2 values of resistor found in class combining them together which 2 would
you use?
Explain what a voltage divider does
What do we use potentiometers in circuits for? Expalin how a potentiometer is a voltage
divider
Multimeter use
You want to measure the current drawn by your LED in a microcontroller circuit, draw a
diagram of how you would do it and what settings you would use on the multimeter.
Algorithms/Modelling
Why do we write algorithms before we program? (Do 2 of the following algorithms)
Write pseudo-code then draw a flowchart for a program to read 2 switches to control the
position of an LCD character, one to move it left, one to move it right and press both to
change line.
Write an algorithm to play as many different tones as possible if you have 4 switches and
press them in different combinations
Write an algorithm to change the speed of a flashing led using 2 switches
Write an algorithm that uses 1 switch to enter the number of times an led will flash and a
second switch to start the LED flashing
Write an algorithm to allow a user to enter their name into a variable, using 3 switches, the
first to increase the litter, the second to move to the next letter, the third to finish.
Variables
If you were to record the position of a character on an LCD what type of variable would you
use?
Describe overflow
If you were have a user enter their age what type of variable would you use?
If you were counting seconds in a minute what type of variable would you use? In an hour? In
a day? In a year? In a century? Give good names for these variables.
Dimension variables that would hold each of your first, last and any middle names.
Programming
Write a short piece of code that counts 15 switch presses and then flashes an LED
Write a short piece of code that checks 4 switches to see if they are all pressed.
Write a subroutine to check if a value is a multiple of 10 and if it is to flash an led once
Write a subroutine to add three strings together with a space beweeen each string
Write a subroutine that gets the first character from each of three strings and displays it on the
lcd
Write asubroutine to get the middle letter of a string and display it on the lcd
Write a subroutine to get a random letter from a string and display it on the lcd
Microcontollers
What are the different uses of the three microcontroller memory types:RAM, FLASH &
EEPROM
Subsystems
Draw a system context diagram for your project

395

Draw a block diagram for your project
What does ‘black box mean’
What are at least 3 things about a 7805 that makes it so useful for a microcontroller circuit
Describe the inputs and outputs of an LCD,
Explain each of the main commands to use an LCD

396

28 Advanced programming -arrays
It is easy to dimension variables to store data, however what do you do when you want to
store many similar variables e.g. 50 light level readings over a period of time.

Do you create 50 variables e.g. lightlevel1, lightlevel2, lightlevel3 lightlevel50 ?
The answer is no because it is so difficult to read and write to 50 different variables.

Think of the data we want to collect as in a table, each row is labelled with a number to
identify the row – we call this an INDEX.

Index lightlevel

1 345

2 267

3 378

4 120

5 203

. .

. .

49 432

50 198

An ARRAY type variable is dimensioned to store the data. Arrays are a highly important
programming structure in computer science.

e.g Dim lightlevel as byte(50) this array becomes very easy to read and write using a loop.
In Bascom the variable lightlevel(1) will be the first value and lightlevel(50) will be the last.

'get 50 values and store them in the array

For index=1 to 50

 lightlevel(index) = getadc(0)

 Waitms 50

Next

'read the 50 values from the array and display them

For index=1 to 50

 Locate 2,1

 Lcd lightlevel(index)

 Waitms 50

Next

In this next program a system has been developed that takes 50 lightlevel readings. The user
can start the readings process and control the display of the readings on the LCD.
Note that the flowchart is split into 2 parts to allow for 1 page printing.
There are 8 if conditions, the first 4 read the 4 buttons, the second are carried out depending
on the value of the variable MODE. All processing is within the subroutines.

397

398

In this exercise you will need to make a small modification to the given program.
' File Name: arrayV1.bas
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E
'LCD
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E =
Portc.3 , Rs = Portc.2
Config Lcd = 40 * 2 'configure lcd screen
'ADC
Config Adc = Single , Prescaler = Auto , Reference = Internal
Start Adc

' Hardware Aliases
Sw_a Alias Pind.6
Sw_b Alias Pind.3
Sw_c Alias Pind.2
Sw_d Alias Pinb.1
Sw_e Alias Pinb.0

' initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111100 'turns off LEDs ignores switches
Portc = &B11111111 'turns off LEDs
Portd = &B10110011 'turns off LEDs ignores switches
'--
' Declare Variables
Dim Opmode As Byte
Dim Reading As Word
Dim Lightlevel(50) As Word
Dim index As Byte
Dim Reading_delay As Byte
Dim num_eadings As Byte
' Initialise Variables
Opmode = 0
num_eadings=50
'--

399

' Program starts here
Cls 'clear lcd screen
Do
 ‘read the switches
 Debounce Sw_a , 0 , Mode_select , Sub
 Debounce Sw_b , 0 , Enter_button , Sub
 Debounce Sw_c , 0 , Prev , Sub
 Debounce Sw_d , 0 , Nxt , Sub
 ‘choose what to do
 Select Case Opmode
 Case 0 : Gosub Display_welcome
 Case 1 : Gosub Collect_data
 Case 2 : Gosub Display_data
 Case 3 : Gosub Cont_reading
 End Select
Loop
End 'end program
'--
' 13. Subroutines
Mode_select:
 Cls 'when mode changes clear the lcd
 Incr Opmode
 If Opmode > 3 Then Opmode = 0
Return

Display_welcome:
 Locate 1 , 1
 Lcd " Data Collector "
 Lowerline
 Lcd " version 1.0 "
Return

Enter_button:
 If Opmode = 1 Then Gosub Collect_data
Return

Collect_data:
 Locate 1 , 1
 Lcd " press enter to "
 Lowerline
 Lcd "start collection"
 Cls
 For index = 1 To num_eadings
 Reading = Getadc(0) 'read lightlevel
 Lightlevel(index) = Reading ' store reading in array
 Locate 3 , 1
 Lcd index 'display the index
 Locate 4 , 1
 Lcd Reading ; " " 'diplay the reading
 Waitms Reading_delay
 Next
 Opmode = 0
Return
Display_data:

400

 Locate 1 , 1
 Lcd index ; " "
 Locate 2 , 1
 Lcd Lightlevel(index) ; " "
Return

Cont_reading:
 Locate 1 , 1
 Lcd "continous readings"
 Locate 2 , 1
 Reading = Getadc(0)
 Lcd Reading ; " "
Return

Prev:
 Decr index
 ‘fix this routine so that it doesn’t underflow
Return

Nxt:
 Incr index
 ‘fix this routine so that it doesn’t overflow
Return

 1. Fix the bugs with the prev and nxt routines so that they don’t go below 0 or above 50.
2. can you modify the proram so that prev and nxt buttons change the timing of the reading,
which mode would it be best to place the new code in?
3. can you modify the program so that the prev and nxt buttons change the number of
readings to be stored.

401

29 AVR pull-up resistors

A useful thing to know about is that the AVRs have internal pullup resistors for use when you connect a
switch to an input pin.

These can be activated from within software; this means you don’t have to connect a separate resistor;
however you still have to activate it.

Note that by default it is not activated.

Config Pind.2 = Input
Set portd.2 ‘activate internal pull-up

If pinb.2 = 0 then
 …
 …
 …
end if

Why didn’t you learn about this straight away, well its important to understand the concept of pullup
resistors and by physically using them you gain a better understanding of them.

402

30 Advanced keypad interfacing

It is quite straightforward using Bascom to read a keypad, it handles all the hard work for us with the built
in function Getkbd().

Config Kbd = Portb
Dim kbd_data As Byte
Kbd_data = Getkbd() 'keybdb returns a digit from 0 to 15
LCD kybd_data

The connection to the microcontroller is straightforward as well, just 8 pins.
Solder headers into the 8 pins of the keypad and 8 pins as shown on the
PCB

How do the 16 key keypad and the software work together?

The Keypad is arranged in a matrix of 4x4 and each row
and column are connected to the microcontroller.
Software:
The micro sets the rows as outputs and puts a low on those
ports. The columns are set as inputs, it reads the columns and if
any key is pressed there will be a 0 on one of the columns. If
there is a 0 then it reverses the situation with the rows as
inputs and columns as outputs and if there is a low on one of the
rows it has a valid keypress. The combination of 0's is used
to determine exactly which key is pressed.

The code which is returned from getkbd() will not match the
number on the keypad so a translation process is required. It is also better to have a subroutine handle
this process and keep it away from your main code. Then this routine can be called from anywhere in the
program.
In this code not only is the key translated but it is not returned untilt he user releases the button, this stops
the key frombeing sensed multiple times.

30.1 Keypad program 1

'--
' 1. Title Block
' Author: B.Collis
' Date: 14 Aug 2003
' File Name: keypad_Ver1.bas
‘develop a simple subroutine that translates key press codes into more recognisable key values.
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
'--
' 6. Hardware Setups
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0
Config Lcd = 20 * 4 'configure lcd screen
Config Kbd = Portd
'8. initialise hardware

403

'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Kbd_data As Byte
Dim Key As Byte
' 11. Initialise Variables
Key = 16
Cls 'clears LCD display
Cursor On Noblink
'--
' 12. Program starts here
Do
 Gosub Readkeypad
 Lcd Key '; " "
Loop
End 'end program

'--
Readkeypad:
'gets a key press and returns a key value 0 to 16
'16 is no key pressed
 Kbd_data = Getkbd()
 If Kbd_data < 16 Then
 Select Case Kbd_data
 Case 0 : Key = 1
 Case 1 : Key = 2
 Case 2 : Key = 3
 Case 3 : Key = 10 'A
 Case 4 : Key = 4
 Case 5 : Key = 5
 Case 6 : Key = 6
 Case 7 : Key = 11 'B
 Case 8 : Key = 7
 Case 9 : Key = 8
 Case 10 : Key = 9
 Case 11 : Key = 12 'C
 Case 12 : Key = 14 '*
 Case 13 : Key = 0
 Case 14 : Key = 15 '#
 Case 15 : Key = 13 'D
 End Select
 End If
Return

404

30.2 Keypad program 2

Generate text / ASCII rather than a numeric value
' Declare Variables
Dim Kbd_data As Byte
Dim Key As String * 2
' Initialise Variables
Key = " "
Cls 'clears LCD display
Cursor On Noblink
'--
' Program starts here
Do
 Gosub Readkeypad
 Lcd Key '; " "
Loop
End 'end program

'--
Readkeypad:
'gets a key press and returns a key value 0 to 16
'16 is no key pressed
 Kbd_data = Getkbd()
 If Kbd_data < 16 Then
 Select Case Kbd_data
 Case 0 : Key = "1"
 Case 1 : Key = "2"
 Case 2 : Key = "3"
 Case 3 : Key = "A"
 Case 4 : Key = "4"
 Case 5 : Key = "5"
 Case 6 : Key = "6"
 Case 7 : Key = "B"
 Case 8 : Key = "7"
 Case 9 : Key = "8"
 Case 10 : Key = "9"
 Case 11 : Key = "C"
 Case 12 : Key = "*"
 Case 13 : Key = "0"
 Case 14 : Key = "#"
 Case 15 : Key = "D"
 End Select
 End If
Return

This program however don’t do anything much for us, they need a little more control to be useful

 Debounce the keys a little

 Only return the value once if a key is held down

 Use the other keys to do something different like move the cursor around the lcd

Changes to
use a string

405

30.3 Keypad program 3 – cursor control

The really big concepts to understand here are 1. cursor control and 2. that
numbers on an LCD are not data.

1. A cursor is a flashing or steady line on a screen to show you where the next
text will be entered. If you want text to appear in certain places on an LCD (or
any screen) you must control it within your program, the LCD itself has very
limited cursor control.

Often with LCDs there appears to be no cursor, as it is not turned on. The
cursor however is still there; just invisible. When text is sent to the display it will
appear at the cursor location and the LCD will move its cursor one space to the
right. In simple programs as with the above two the microcontroller has no idea
where the cursor is, it just gives the LCD data to display.

If you want text to appear in a certain location on the screen then you have to
move the cursor with Bascom’s LOCATE function.

In a complex program you may want to move the text around the screen at will,
so you do this by moving the cursor first and then sending data to the display.
In this case you need to keep track of the cursor location yourself by using
some variables, as in this next program.

2. Data is in your program. In this program data is collected from a keypad and
stored in a variable. Then this data is put onto the LCD, these are two separate
and different control processes. Don’t mix them up, when programming keep
them within separate sub routines.

' Declare Variables
Dim I As Byte
Dim Cursor_x As Byte
Dim Cursor_y As Byte
Dim Kbd_data As Byte
Dim Key As Byte
' Initialise Variables
I = 0
Cursor_x = 1
Cursor_y = 1
Key = 16 'nothing to process to start with
Cls 'clears LCD display
Cursor Noblink 'steady cursor
'--
' Program starts here
Locate Cursor_y , Cursor_x 'move lcd cursor to top left corner of LCD
Do
 Gosub Read_1_keypress 'get a single key press
 Gosub Disp_char 'display char and move cursor
Loop
End 'end program

Disp_char:
'displays numbers on lcd
'uses A,B,C,D to move the cursor , * to clear the screen, # to insert space
'the use of key=16 is so that the key is sensed only once per press

Cursor
control
variables

406

'cursor control is one of the big concepts here.
 Select Case Key
 Case Is < 10: 'number
 Lcd Key
 Incr Cursor_x
 If Cursor_x > 20 Then Cursor_x = 1 'on overflow wrap to left
 Locate Cursor_y , Cursor_x 'position the cursor
 Key = 16 'key processed
 Case 10: 'A = go right
 Incr Cursor_x
 If Cursor_x > 20 Then Cursor_x = 1 'on overflow wrap to left
 Locate Cursor_y , Cursor_x
 Key = 16 'key processed
 Case 11: 'B = go left
 Decr Cursor_x
 If Cursor_x = 0 Then Cursor_x = 20 'on underflow wrap to right
 Locate Cursor_y , Cursor_x
 Key = 16 'key processed
 Case 12 : 'C = go down
 Incr Cursor_y
 If Cursor_y > 4 Then Cursor_y = 1 'on overflow wrap to top
 Locate Cursor_y , Cursor_x
 Key = 16 'key processed
 Case 13 : 'D = go up
 Decr Cursor_y
 If Cursor_y = 0 Then Cursor_y = 4 'on underflow wrap to bottom
 Locate Cursor_y , Cursor_x
 Key = 16 'key processed
 Case 14 : '* = clear screen
 Cls
 Cursor_x = 1
 Cursor_y = 1
 Key = 16 'key processed
 Case 15 : '# = clear screen
 Lcd " "
 Incr Cursor_x
 If Cursor_x > 20 Then Cursor_x = 1 'on overflow wrap to left
 Locate Cursor_y , Cursor_x
 Key = 16 'key processed
 End Select
Return

407

'--
Read_1_keypress:
'gets a key press and returns a key value 0 to 16
'16 is no key pressed
 Kbd_data = Getkbd()
 If Kbd_data < 16 Then
 Select Case Kbd_data
 Case 0 : Key = 1
 Case 1 : Key = 2
 Case 2 : Key = 3
 Case 3 : Key = 10 'A
 Case 4 : Key = 4
 Case 5 : Key = 5
 Case 6 : Key = 6
 Case 7 : Key = 11 'B
 Case 8 : Key = 7
 Case 9 : Key = 8
 Case 10 : Key = 9
 Case 11 : Key = 12 'C
 Case 12 : Key = 14 '*
 Case 13 : Key = 0
 Case 14 : Key = 15 '#
 Case 15 : Key = 13 'D
 'Case 16 : Key = 16 'nothing pressed
 End Select
 End If
 'wait until the user releases the key
 Do
 Kbd_data = Getkbd()
 Loop Until Kbd_data = 16
 'by experimentation, it was realised that a small debounce
 'delay made this routine stable
 Waitms 5
Return

Routines like this are useful where the user has to enter data into the program and you want it on the
display as well.

Remember the two concepts

1. Cursor control
2. Reading data and displaying data are two separate things

408

30.4 Keypad texter program V1

In this program we want to get text froma keypad. It will operate so that when the button is held down it
will scroll through the text on the key pad as well. e.g. holding down 6, will initially return ‘6’ then after
80ms ‘M’, then after 80ms ‘N’, then after 80ms ‘O’, then after 80ms ‘m’, then after 80ms ‘’n then after
80ms ‘o’.

So we start a counter (and every 1ms
increase it)
The routine exits but everytime it
returns it increase count

From 0 to 79 the routine returns ‘6’.

From 81 to 160 it returns ‘M and so on

'---

' Title Block
' Author:B.Collis
' Date: Aug09
' Version: 1.0
' File Name: keypad_texterV1.bas
'--
' Program Description:
' This program reads a keypad for digits and letters (both small & caps)
'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 ' internal clock
$regfile = "m8535.dat"
'--
' Hardware Setups
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0
Config Lcd = 20 * 4 'configure lcd screen

 keypressed? N

Y

 same key? N

Y

increase 1ms counter

 counted too far ? Y

N
limit counter to end of table

 counter a multiple of 80? Y

N
lookup new key_char

return

read keypad
get a key value

keypad texter

remember new value
lookup key_char

return

return a '?'

409

Config Kbd = Portd
'--
' Declare Constants
Const Key_repeatdelay = 50
Const Key_debouncedelay = 20
Const Key_repeat1 = 80
Const Key_repeat2 = 160
Const Key_repeat3 = 240
Const Key_repeat4 = 320
Const Key_repeat5 = 400
Const Key_repeat6 = 480
Const Key_repeat7 = 560
Const Key_repeat8 = 640

' Declare Variables
Dim Kbd_data As Byte
Dim Key As Byte
Dim Oldkey As Byte
Dim Lookupval As Byte
Dim Key_counter As Word
Dim Key_char As String * 2
' Initialise Variables
Key_counter = 0

'--
' Program starts here
Cls
Cursor Off
Do
 Gosub Read_keychar
 If Key_char <> "?" Then
 Locate 1 , 5
 Lcd Key_char ; " "
 End If
Loop
End 'end program

410

'--
' Subroutines
Read_keychar:
 Kbd_data = Getkbd() 'read a key
 Key = Kbd_data 'store the keypress
 If Kbd_data = 16 Then 'no key pressed
 Oldkey = 16 'remember no key pressed
 Lookupval = 144 'return '?'
 Key_char = Lookupstr(lookupval , Chrcodes)
 Return 'exit the subroutine
 End If
 If Key = Oldkey Then 'key still pressed
 Waitms 1
 Incr Key_counter
 Select Case Key_counter
 Case Key_repeat1 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat2 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat3 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat4 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat5 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat6 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat7 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 Case Key_repeat8 :
 Lookupval = Lookupval + 16
 Key_char = Lookupstr(lookupval , Chrcodes)
 End Select
 If Key_counter > Key_repeat8 Then Key_counter = Key_repeat8
 Else 'new keypress
 Oldkey = Key
 Lookupval = Key
 Key_counter = 0
 Key_char = Lookupstr(lookupval , Chrcodes)
 End If
Return

411

'--
Chrcodes:
Data "1" , "2" , "3" , "A" , "4" , "5" , "6" , "B" ,
Data "7" , "8" , "9" , "C" , "*" , "0" , "#" , "D" ,
'2nd press
Data "1" , "A" , "D" , "A" , "G" , "J" , "M" , "B" ,
Data "P" , "T" , "W" , "C" , "*" , "C" , "#" , "D" ,
'3rd press
Data "1" , "B" , "E" , "A" , "H" , "K" , "N" , "B" ,
Data "Q" , "U" , "X" , "C" , "*" , "L" , "#" , "D" ,
'4th press
Data "1" , "C" , "F" , "A" , "I" , "L" , "O" , "B" ,
Data "R" , "V" , "Y" , "C" , "*" , "S" , "#" , "D" ,
'5th press
Data "1" , "a" , "d" , "A" , "g" , "j" , "m" , "B" ,
Data "S" , "t" , "Z" , "C" , "*" , "d" , "#" , "D" ,
'6th press
Data "1" , "b" , "e" , "A" , "h" , "k" , "n" , "B" ,
Data "p" , "u" , "w" , "C" , "*" , "a" , "#" , "D" ,
'7th press
Data "1" , "c" , "f" , "A" , "i" , "l" , "o" , "B" ,
Data "q" , "v" , "x" , "C" , "*" , "M" , "#" , "D" ,
'8th press
Data "1" , "c" , "f" , "A" , "i" , "l" , "o" , "B" ,
Data "r" , "v" , "y" , "C" , "*" , "A" , "#" , "D" ,
'9th press
Data "1" , "c" , "f" , "A" , "i" , "l" , "o" , "B" ,
Data "s" , "v" , "z" , "C" , "*" , "N" , "#" , "D" , "?"
'keypad layout and codes
'1 2 3 A
'4 5 6 B
'7 8 9 C
'* 0 # D

This program works however there is some repetition in it with the lookups so that there is the opportunity
for it to be rewritten as per the next page

412

30.5 Keypad texter program 1a

This version of the program instead of having a lot of repeating code does some maths to work out the
multiple of 80 and uses that to lookup the key character.

' new constants to replace all the old ones
Const Key_repeatdelay = 80
' ADD ONE NEW VARIABLE TO THE OTHERS ABOVE
Dim I As Word

' Subroutine
Read_keychar:
 Kbd_data = Getkbd() 'read a key
 Key = Kbd_data 'store the keypress
 If Kbd_data = 16 Then 'no key pressed
 Oldkey = 16 'remember no key pressed
 Lookupval = 144 'return '?'
 Key_char = Lookupstr(lookupval , Chrcodes)
 Return 'exit the subroutine
 End If
 If Key = Oldkey Then 'same key still pressed
 Waitms 1
 Incr Key_counter 'count in 1ms increments
 I = Key_repeatdelay * 8 'check we havent gone too far
 If Key_counter > I Then Key_counter = I 'so we dont overflow end of table
 I = Key_counter Mod Key_repeatdelay 'MOD means get remainder
 If I = 0 Then '0 means it is a multiple of 80
 I = Key_counter / Key_repeatdelay 'how many multiples of 80
 Lookupval = I * 16 'get char from table
 Lookupval = Lookupval + Kbd_data
 Key_char = Lookupstr(lookupval , Chrcodes)
 End If
 Else 'new keypress
 Oldkey = Key 'remember key press
 Lookupval = Key
 Key_counter = 0 'start counting again
 Key_char = Lookupstr(lookupval , Chrcodes) 'get char from table
 End If
Return

413

30.6 ADC keypad interface

A 16 button keypad is a really nice feature for our projects but generally it requires 8 lines to connect it to
a microcontroller; and sometimes we just don’t have these available as we have used them all up.
In this voltage divider circuit whenever a key is pressed the voltage to the microcontroller changes and
can be sensed using a single ADC input.

This program reads the ADC value and displays both it and a value representing which key is pressed on
the LCD. The values of resistor chosen in the above schematic allow a range of values from 0-2V, so we
will use the internal reference voltage rather than the VCC voltage as comparison value for our ADC
converter. NOTE YOU MUST NOT HAVE AREF PIN CONNECTED ON THE MICRO WHEN USING THE
INTERNAL VOLRAGE REFERENCE!!

'--

'Title Block

' Author: B.Collis

' Date: July 2010

' File Name: keypad1ioLine.bas

'--

' Program Description:

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control lines

' keypad connected as per R4R circuit on 1 ADC line

' lm35 on adc

414

' AREF PIN32 disconnected – uses internal 2.56V reference

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m32def.dat" 'the micro we are using

'--

'Hardware Setups

Config Porta = Input '

Config Adc = Single , Prescaler = Auto , Reference = Internal

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 20 * 4 'configure lcd screen

'Harware Aliases

Kp Alias 1

Lm35 Alias 0

Led0 Alias Portc.0

Led1 Alias Portc.1

'---

'Declare Constants

Const Timedelay = 150

'--

'Declare Variables

Dim Keypress As Word

Dim Key As Byte

Dim Tempr As Word

'Initialise Variables

Key = 16 'no press

'--

'Program starts here

Cls 'clears LCD display

Cursor Off 'no cursor

Lcd "ADC Keypad tester"

Do

 Keypress = Getadc(kp)

 Locate 2 , 1

 Lcd Keypress ; " "

 If Keypress < 955 Then

 Gosub Lookupkey

 Lcd Key ; " "

 End If

 Tempr = Getadc(lm35)

 Tempr = Tempr / 2

 Locate 3 , 2

 Lcd Tempr ; " "

 Waitms 100

Loop

End 'end program

415

'--

'Subroutines

Lookupkey:

 Select Case Keypress

 Case 290 To 340 : Key = 1

 Case 341 To 394 : Key = 2

 Case 395 To 443 : Key = 3

 Case 444 To 505 : Key = 10

 Case 506 To 563 : Key = 4

 Case 564 To 603 : Key = 5

 Case 604 To 640 : Key = 6

 Case 641 To 688 : Key = 11

 Case 689 To 734 : Key = 7

 Case 735 To 765 : Key = 8

 Case 766 To 795 : Key = 9

 Case 796 To 832 : Key = 12

 Case 833 To 868 : Key = 14

 Case 869 To 894 : Key = 0

 Case 895 To 917 : Key = 15

 Case 918 To 940 : Key = 13

 Case Else : Key = 16

 End Select

Return

'--

'Interrupts

416

31 Do-Loop & While-Wend subtleties
Learning to keep things under control by understanding what happens with loops

$sim ‘copy this code into Bascom and run it in the simulator
$crystal = 8000000
$regfile = "m8535.dat"
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
Cls
Cursor Off
Const Timedelay = 150
Dim Count As Byte

Locate 1 , 1
Count = 0
While Count < 5
 Incr Count
 Lcd "*"
Wend

Prints 5 *****
even though the count never gets to 5

Locate 2 , 1
Count = 0
Do
 Incr Count
 Lcd "*"
Loop Until Count =5

Prints 5 *****
Count must get to 5 for the output to be 5 asterisks

Locate 3 , 1
Count = 5
While Count < 5
 Incr Count
 Lcd "*"
Wend

Does not print anything
A while wend might not execute

Locate 4 , 1
Count = 5
Do
 Incr Count
 Lcd "*"
Loop Until Count = 5

Gets stuck and continues to print ******
A do loop will always execute at least once
So in this case it executes the first time and increases
count to 6 and then just keeps going

Output of the above code

 It is essential when programming to test your code and when you have loops getting out of
control look for tests that might be wrong

417

31.1 While-Wend or Do-Loop-Until or For-Next?

When you want something to repeat there are different ways to do it Here are a number of
different ways to do the same thing. The program puts a shooter and a target on an LCD and
fires bullets if the shooter is to the left of the target. The differences however are subtle and
require careful testing of the routines to expose the clearest and best functioning

The first 2 use the do-loop-until, then the next 3 use while-wend and the last uses a for-next
'--
' 1. Title Block
' Author: B.Collis
' Date: 21 April 2005
' File Name: shoot_v1.bas
'--
' 2. Program Description:
' Program moves a bullet across the lcd display
' Hardware Features:
' LCD
' Program Features
'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
$crystal = 8000000 'the speed of the micro
'--
' 4. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Portc = Output 'LCD on portC
Config Portd = Output
'LCD redefine these for your LCD connection
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =
Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
'LCD special characters
Deflcdchar 0 , 8 , 20 , 11 , 30 , 8 , 8 , 20 , 20 ' shooter
Deflcdchar 1 , 32 , 32 , 16 , 32 , 32 , 32 , 32 , 32 ' bullet
Deflcdchar 2 , 2 , 7 , 18 , 15 , 2 , 2 , 5 , 5 ' target
Deflcdchar 3 , 32 , 4 , 16 , 32 , 2 , 8 , 14 , 31 'dyingman
Deflcdchar 4 , 32 , 32 , 32 , 32 , 32 , 6 , 14 , 31 ' deadman
' 5. Hardware Aliases

' 6. initialise ports so hardware starts correctly
Cls
Cursor Off
'--
' 7. Declare Variables
Dim Bullet_pos As Byte
Dim Shooter_pos As Byte
Dim Target_pos As Byte

' 8. Initialise Variables
Shooter_pos = 1
Target_pos = 20

418

'--
' 9. Declare Constants and program aliases
Const Bullet_speed = 600
Const Deathroll = 300
Const Bullet = 1
Const shooter = 0
Const Target = 2
Const Dyingman = 3
Const Deadman2 = 4

'--
' 10. Program starts here

Do
 Lcd "shooter"
 'test program for bullet routine
 Shooter_pos = Rnd(20) 'get a random position (0 to 19)
 Incr Shooter_pos 'get a random position (1 to 20)
 Target_pos = Rnd(20) 'get a random position (0 to 19)
 Incr Target_pos 'get a random position (1 to 20)
 Locate 3 , 1
 Lcd "S=" ; Shooter_pos ; " "
 Locate 4 , 1
 Lcd "T=" ; Target_pos ; " "
 Locate 2 , Shooter_pos
 Lcd Chr(shooter) 'man with gun
 Locate 2 , Target_pos
 Lcd Chr(target) 'target man
 Gosub Fire_bullet_do_v1 ‘replace with alternative routines
 Wait 3
 Cls 'use cls carefully in programs
 ' or the LCDs can flicker
Loop
End 'end program

Here is a flowchart for the fire_bullet routine, on the next
pages are different implementations of it and explanations
of their problems

419

Fire_bullet_do_v1: '1336 bytes
'this routine moves a bullet across the display
 If Target_pos > Shooter_pos Then 'shooter is left of target
 Bullet_pos = Shooter_pos 'start at the shooter position
 Do 'not hit yet
 Incr Bullet_pos ‘increase first
 Locate 2 , Bullet_pos ‘draw bullet
 Lcd Chr(bullet)
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 Loop Until Bullet_pos = Target_pos
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
Return

Using the do-loop this
way resulted in the
programming taking
up 1336 bytes in flash
making it the shortest
version.

However it has a
subtle problem. When
the bullet reaches the
target it first replaces
the target then there
is a delay and then
the dying man image
appears. Using a high
value for bulletspeed
allows you to see the
problem happen.

Fire_bullet_do_v2: '1343 bytes
'this routine moves a bullet across the display
 If Target_pos > Shooter_pos Then 'shooter is left of target
 Bullet_pos = Shooter_pos + 1 'start in next lcd segment
 Do 'not hit yet
 Locate 2 , Bullet_pos
 Lcd Chr(bullet) 'draw bullet
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 Incr Bullet_pos ‘increase after
 Loop Until Bullet_pos >= Target_pos ‘check if gone past
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
Return

This code implements
the bullet hitting the
target properly as the
last bullet appears in
the space before the
target and then after
the bulletspeed delay
the target becomes
the dying man. To do
this the code had to
be changed. Note the
changes in the lines in
bold that are different
or in different
locations to the
previous routine.

420

Fire_bullet_while_v1: '1344 bytes
'this routine moves a bullet across the display
 If Target_pos > Shooter_pos Then ' shooter is left of target
 Bullet_pos = Shooter_pos + 1 'start in next lcd segment
 While Bullet_pos < Target_pos 'not hit yet
 Locate 2 , Bullet_pos
 Lcd Chr(bullet) 'draw bullet
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 Incr Bullet_pos
 Wend
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
Return

This code segment
uses the while-wend.
Even though it is
longer than the above
code when compiled it
correctly implements
the final bullet not
hitting the target.

Fire_bullet_while_v2: '1342 bytes
'this routine moves a bullet across the display
 Bullet_pos = Shooter_pos + 1 'start in next lcd segment
 While Bullet_pos <= Target_pos 'not hit yet
 Locate 2 , Bullet_pos
 Lcd Chr(bullet) 'bullet
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 If Bullet_pos = Target_pos Then
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
 Incr Bullet_pos
 Wend
Return

In this subroutine the
initial if-then
statement that checks
the relative positions
of the shooter and
targets is removed in
an attempt to
streamline the code.
However it is not quite
as efficient code as
the first. When the
target is left of the
shooter 2 lines of
code are executed,
first the bullet pos is
calculated and then
the position is
checked.
It also reintroduces
the same problem as
first do-loop with the
bullet replacing the
target.

421

Fire_bullet_while_v3: '1340 bytes
'this routine moves a bullet across the display
 Bullet_pos = Shooter_pos + 1 'start in next segment
 While Bullet_pos < Target_pos 'not hit yet
 Locate 2 , Bullet_pos
 Lcd Chr(bullet) 'draw bullet
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 Incr Bullet_pos
 Wend
 If Bullet_pos = Target_pos Then 'hit
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
Return

This code executes
correctly however it is
also inefficient. If the
target is left of the
shooter three lines of
code are executed.
Bullet_pos is calculated,
the while is checked and
the if is checked. It is
really untidy code as it
tries to separate the 2
ideas which are
integrated together in the
flowchart by separating
the while and if parts,
These 2 ideas are
importantly linked
together. This can lead to
real big problems as
changing one of them has
consequences on the
other.

Fire_bullet_for: '1352 bytes
'this routine moves a bullet across the display
 If Target_pos > Shooter_pos Then ' shooter is left of
target
 Incr Shooter_pos 'start in next segment
of lcd
 For Bullet_pos = Shooter_pos To Target_pos
 Locate 2 , Bullet_pos
 Lcd Chr(bullet) 'draw bullet
 Waitms Bullet_speed
 Locate 2 , Bullet_pos 'blank the bullet
 Lcd " "
 Next
 Locate 2 , Target_pos
 Lcd Chr(dyingman)
 Waitms Deathroll
 Locate 2 , Target_pos
 Lcd Chr(deadman2)
 End If
Return

This also has the problem
of the bullet replacing the
target. It is really bad
programming practice
though as the variable
shooter_pos had to be
increased for the code to
work. It is poor
programming practice to
alter a variable you don’t
need to. If you use the
variable shooter_pos
elsewhere in your
program then it could
have disastrous effects.
This also compiled into
the longest code

The best of these is the first while loop, it is the easiest to follow and works correctly.
Lessons:

 Get to know the three looping methids

 TEST TEST TEST your code carefully and methodically to identify correct operation

 When changing code retest it thoroughly for introduced errors

 Avoid changing variables you shouldn’t change

 Keep records of your experiments to get the best possible grades

422

32 DC Motor interfacing
Nowadays who doesn’t want to see motor attached to a microcontroller moving something
around! But to do this a bit of knowledge and understanding is required first, some of which is
important physics knowledge.

 A dc motor is made from a coil of wire, a magnet, a battery, brushes and a commutator
(rotary switch). There is a neat video on youtube
http://www.youtube.com/watch?v=zOdboRYf1hM of a simple motor and another one that
demonstrates the importance of the commutator (only one side of the wire has its insulation
removed) http://www.youtube.com/watch?v=it_Z7NdKgmY

While a diagram such as this on the left shows
a simple description of the construction of a
DC motor a typical dc motor has:

 several separate coils and multiple
connections to the commutator,

 many turns on each coil of wire

 a shaft through the coil to which we can
connect things like wheels or gearboxes.

We can control a small DC motor with a
simple transistor switch ciruit, similar to the
LCD backlight control.In this case the
backlight has been replaced by a motor, a
capacitor and a diode.

When a motor is running it produces a lot of
electrical noise, this is due to the current
being switched on and off by the commutator
several times per second. The actual
sparking can be seen between the brushes
ane the comutator on some motors. This
noise appears as spikes in the voltage on the
power lines to the microcontroller and can
cause your micro to reset all the time.

The diode is another important safety device
to protect your transistor and microcontroller

from sure desctruction.
A motor is a coil of wire i.e. an inductor; when there is
current a magnetic field forms around the coil and when
you turn it off this field collapses back into the coil turning
your coil into a generator for a very short period of time,
the field collapse causes charges to flow in the opposite
direction and these can flow back into tyour transistor
killing it instantaneously. The diode conducts these
charges away safely.

http://www.youtube.com/watch?v=zOdboRYf1hM
http://www.youtube.com/watch?v=it_Z7NdKgmY

423

DC Motors come in all shapes and sizes

Knowledge about driving these devices relies on understanding the specifications for your
motor.

A DC motor is rated at the voltage it is most efficient at. It is always tempting to run it at a
higher voltage but if you apply too much it will overheat, when it gets too hot the insulation on
the wires of the coil will melt shorting the whole lot out and cause a small (hopefully not big)
fire. If you run it at a lower voltage, it just wont work or it wont work anywhere as well. The
reason being that voltage is directly related to motor torque. Less voltage less torque, more
voltage more torque.

DC motors are generally made as non-polarized do if you reverse the voltage it goes in the
opposite direction.

They have an operating current which is the typical current the motor will use under normal
load/torque. The power used wll be the operating current times the rated voltage.
Your power supply must be able to meet this power requirement. If you have a 12V 2A (24W)
motor and your power supply is only capable of 12V 500mA you will never drive the motor
properly.

Another current rating is of significance it is the stall current. If you run you motor, but you
hold the shaft so that it stops rotating a lot of current will flow (stall current) and a lot of power
will be required. You must understand this when designing the power control circuits. Your
power supply should be fused as well in case problems with the motor draw too much current
over heating it.

424

32.1 H-Bridge

A single transistor may be useful for turning a motor on or off however if a motor needs to be
reversed in direction then an H-Bridge circuit is called for.
The principal is simple to reverse direction reverse the connection to the battery

B and C
switches closed

A and D
switches MUST
BE OPEN
or the battery
will be shorted
out!

A and D
switches closed

B and C
switches muts
be open or the
battery will be
shorted out!

NOTE : the circuit has fuses in it – these are a really really really good idea!!

425

A microcontroller can be used successfully to achieve this by switching 2 out of 4 transistors
on and off in sequence.

In the above diagrams the thick lines represent the fact that large currents are drawn through
the motor and transistors, so heavy wiring is also required as well as fuses!

426

32.2 H-Bridge Braking

If we turn off all the transistors in an H-Bridge then the motor is free to turn. If we want it to
stop in a hurry though we can force the motor to brake by shorting it out. To do do this we
turn on two transistors such as A and B OR C and D .

Truth table
This is a common thing to see in electronics a table that describes what happens on the
output for each different combination of inputs. With 4 inputs there are 16 possible inputs.
All combinations of inputs have been covered in this table.

A B C D Motor

H L L H Rotate Left

L H H L Rotate Right

H H L L Brake

L L H H Brake

L L L L Free

H L L L Free

L H L L Free

L L H L Free

L L L L Free

L L L H Free

H X H X Shorted Battery!!

X H X H Shorted Battery!!

H = high = 1
L = low = 0
 X = don’t care (this means that the otherinputs selected as high or low already have priority
over these and it doesn’t matter what you choose here)

427

32.3 L293D H-Bridge IC

Making an H-bridge
circuit is not necessary
for small and medium
sized motors as plenty
of ICs exist to help
you, one of these is
the L293D.

There are a couple of
different versions of
this IC the D model
has internal protection
diodes.

There are 4 ground
pins which all must be
connected to the pcb,
they act as a heatsink
for power to dissipoate
through.

428

The Enable pin must be
high (1) for the chip to
do its job, if it is low (0)
then the output is off,
what we call high
impedance, that means
floating, something we
normally want to avoid
on input pins to a
microcontroller but
whichis great on
outputs.

429

32.4 L298 H-Bridge IC

430

32.5 LMD18200 H-Bridge IC

In this diagram two LMD18200 circuits are connected to two DC motors from handheld drills.

431

The circuit is straight forward, but some LEDs have been added so that the operation of the
circuit can be observed while under the control of the microcontroller.
There is on this chip a great current sense feature that we can use to feedback information to
the micro.

To control this IC we need to know how to turn it on and off

From this truth table we read:

To run the motor brake should be low, direction
will be high or low and PWM should be high

To stop the motor, the brake should be high,
PWM should be high and DIR can be either high
or low.

432

Layouts for the board, note the very large tracks becase a lot of power can be used in this
circuit.

433

32.6
LMD18200 program

$regfile = "8535def.dat" ' the micro we are using
'--
' Hardware Setups
' setup direction of all ports
Config Portd = Output
' 7. Hardware Aliases
M1dir Alias Portd.0
M1brk Alias Portd.1
M1pwm Alias Portd.4
M2brk Alias Portd.3
M2dir Alias Portd.2
M2pwm Alias Portd.5
'--
' Program starts here
Reset M2brk
Set M2dir
Reset M2pwm
Reset M1brk
Reset M1dir
Set M1pwm
Wait 3

Do
 Reset M1pwm 'off
 Waitms 10
 Set M1pwm 'on
 Waitms 1
Loop ' keep looping forever
End 'end program

434

32.7 Darlington H-Bridge

In this project TC developed a tool trolley for a mechanic working under
a car. Here is it shown upside down with two darlington H-bridge
boards on it.

The motors are used electric window motors form a car and the wheels
were from roller skates. Two castors were also needed for the final
product.

A high current circuit was needed so Darlington
transistors were used.

Darlingtons such as BDX53C have much higher gain,
because they effectively have 2 transistors one after the
other in the circuit.
hFE for the BDX53C is at least 750.

Note that it has a protection diode built
into it already, but more were added in
the circuit in case transistors without
protection diodes were used to replace
them in the future.

In other uses of this circuit TIP126 and TIP127 transistors were used. They have an hFE of at last 1000,\

435

This circuit was based upon the circuit from www.mcmanis .com all we did differenyl was use parts easily available to us in NZ.
It has a really neat feature of protectingthe micr from transistor and motor noise using opto isolators and the smart way in which it is wired
means we cannot turn on Q1 and Q3 (or Q2 and Q4) at the same time and blow them up!

436

Layout diagrams

An important point to note are the heavy current tracks from the
power supply to the power transistors.

Here is the microphone sensor circuit.fo this sound tracking
robot; 4 of these were needed with one mounted in each
corner.

437

32.8 Stepper motors

Stepper motors can be found in old printers and depending on the voltage and current can make small robots.

438

Think of a stepper motor as having 4 windings, they can be driven in full step mode where only one winding is on at a time, however they are
better driven in half step mode where either one winding or two windings are on at a time.

439

To get drive the motor in either of the above ways a simple ULN2803 darlington transistor array could be used

However there are a lot of inefficiencies in this sort of circuit and the motor power can be more fully made use of by driving more than one
winding at a time, sometimes in differentdirections, which requires an H-Bridge type circuit.

440

The L297 and L298 are some great driver chips for stepper motors, they do require careful use and are probably harder to find nowadays.

441

Full schemtic of the PCB
with two complete driver
circuits

442

Component layout for the PCB

443

As with all motor circuits there is a
need to keep tracks as short and
direct as possible do note how this is
achieved on the board

444

32.9 PWM - pulse width modulation

To control the brightness of an LED or speed of a dc motor we could reduce the voltage to it, however this
has several disadvantages in terms of power reduction; a better solution is to turn it on and off rapidly. If
the rate is fast enough then the flickering of the LED or the pulsing of the motor is not noticeable.

If this waveform was applied to a motor it would run at around half speed.

If this waveform were applied to an LED it would be at about ¾ brightness

If this waveform were applied to an motor it would be run at about ¼ speed

The AVR timer/counters can be used in PWM mode where the period of the wave or frequency is kept
the same but the pulse width is varied. This is shown in the 3 diagrams, the period is 2mS for each of the
three waveforms, yet the pulsewidth (on time) is different for each one (other modes do exist however
these will not be described yet).

445

32.10 PWM outputs

In the Atmel microcontrollers there are one, two or sometimes more PWM output pins attached to each
timer. On the ATMega16 Timer 0 has 1 PWM output, Timer 1 has two PWM outputs and Timer 2 has 1
PWM output :

These special pins mean that the PWM output once it is going is completely separate from your software.

 For Timer0 the pin is OC0 (portB.3)

 For Timer1 the pins are OC1A (portD.5) and OC1B (portD.4)

 For Timer2 the pin is OC2 (portD.7)

Here is example code to drive some different output devices connected to OC1A and OC1B

'O/P Period = 4ms /freq = 250Hz (suitable for dimming an LED)

' range of brightness is controlled by the Compare1a and Compare1b registers

' as the Timer is set in 8 bit mode the values can be from 0 to 255

Config Timer1 = Pwm , Prescale = 64 , Pwm = 8 , Compare A Pwm = Clear Down ,

Compare B Pwm = Clear Down

Compare1a = 200 'high values = bright

Compare1b = 2 'low values = dim and high values = bright

'O/P freq = 16kHz (suitable for speed control of a dc motor) , range is 0 to

255

Config Timer1 = Pwm , Prescale = 1 , Pwm = 8 , Compare A Pwm = Clear Down ,

Compare B Pwm = Clear Down

Compare1a = 200 'high speed

Compare1b = 20 'low speed

'O/P freq = 8kHz (suitable for speed control of a dc motor) , range = 0 to

511

Config Timer1 = Pwm , Prescale = 1 , Pwm = 9 , Compare A Pwm = Clear Down ,

Compare B Pwm = Clear Down

Compare1a = 511 'high speed

Compare1b = 20 'low speed

446

32.11 Uses for PWM

A pulse is used to charge a capacitor through a resistor, when the
pulse is high the capacitor will charge, when it is low the capacitor
will discharge, the wider the pulse the longer the capacitor charges
and the higher the voltage will be.

The width of the pulse determines the average DC voltage getting
to the motor which in turn slows or speeds up the motor. the
advantage of using PWM rather than reducing the actual voltage
is that torque (power) of the motor maintained at low speeds.

Period - the time from one point in the waveform to the same point
in the next cycle of the waveform.
Frequency - the inverse of the period, if period = 2mS the frequency = 1/0.002 = 500 Hz (Hertz).
Pulse width - the length of time the pulse is high or on. The 'mark' time.
Duty cycle - the on time of the pulse as a proportion of the whole period of the waveform.

447

32.12 ATMEL AVRs PWM pins

As time goes by every new model of the AVR microcontroller that is introduced has more features; and it
can be hard to keep up with all these features. For instance PWM each chip has different capabilities for
hardware PWM.

AVR PWM Pins

ATTiny13 2 using Timer 0 OC0A OC0B

ATTiny45 2 using Timer 0
2 using Timer 1

OC0A OC0B
OC1A OC1B
(note OC0B and OC1A share the same
pin so cannot be used at the same time)

ATTiny2313 2 using Timer 0
2 using Timer 1

OC0A OC0B
OC1A OC1B

ATTiny26 2 using Timer 1 OC1A OC1B

ATTiny461 6 using Timer 1 OC1A OC1B OC1D
(and their inverses)

ATMega8535 / 16 / 32 1 using Timer 0
2 using Timer 1
1 using Timer 2

OC0
OC1A OC1B
OC2

ATMega48 / 644 2 using Timer 0
2 using Timer 1
2 using Timer 2

OC0A OC0B
OC1A OC1B
OC2A OC2B

448

32.13 PWM on any port

The issue with hardware PWM is that it is fixed to particular pins on the microcontroller.
What happens then when you want more PWM outputs or to use different pins.
Here is a PWM solution for PWM on portA.7 using the 8 bit timer0.

'PWM Timer2 pwm on any port

'Timer 2 PWM 8bit period = 15.8mS =64Hz (suitable for driving a servo motor)

Config Timer2 = Pwm , Prescale = 256 , Compare Pwm = Disconnect

Compare2 = 50

Enable Timer2 : Enable Oc2

Enable Interrupts

'**

'Program starts here

Do

Loop

End

'**

'Interrupt Routines

'Timer2 pwm on any port, freq = 64Hz

 T2_ovf:

 Set PORTA.7

 Return

 T2_oc2:

 Reset PORTA.7

 Return

449

32.14 PWM internals

Each PWM output has independent settings for the pulse width however if they are controlled by the same
timer they will will run at the same frequency.
The 3 PWM modes for timer1 discussed here are the 8, 9 & 10 bit mode.

 In 8 bit mode the counter counts from 0 to 255 then back down to 0.

 In 9 bit mode the counter counts from 0 to 511 then back down to 0.

 In 10 bit mode the counter counts from 0 to 1023 then back down to 0.

The programmer sets a point from 0 to 255 at which the output will change from high to low.
If the value were set to 100 then the output pulse on portd.5 (OC1A) would switch from 0Volts (0) to 5
Volts (1) as in the next picture.

To work out the frequency of the pulses
For 8 bit: Freq = 8000000/prescale/256/2
For 9 bit: Freq = 8000000/prescale/512/2
For 10 bit: Freq = 8000000/prescale/1024/2

450

The lines of code to get the above waveforms on OC1A and OC1B would be

 Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B Pwm = Clear up ,
Prescale = 1024

 Compare1a = 100

 Compare1b = 10

 Frequency values for different input crystal and prescale value

 OUTPUT FREQUENCY (Hz) for a crystal frequency of 7,372,800

 Prescale Value

1 8 64 256 1024

PWM

8 Bit 14,456 1,807 226 56 14

9 Bit 7,214 902 113 28 7

10 Bit 3604 450 56 14 4

451

33 Advanced System Example – Alarm Clock
Bascom has built in functions for managing the time and date. These require a 32.768Khz crystal to be connected to the micro.

In System Designer you can
add the crystal to the diagram.
Take note that this must go
onto the pins shown and that
Bascom software routines for
the time use Timer2. So it
canot be used for anything
else.

In the variables table the
variables that Bascom creates
automatically are avaialbel for
you to use within your program.

To use the cryatal and these
features add the following 3
lines to your program

Config Clock = Soft
Config Date=Mdy, Separator=/
Enable Interrupts

452

In this first program the date and time are displayed on an LCD

‘SoftClockDemoProgam1.bas
‘32.768kHz crystal is soldered onto C.6 and C.7 of an ATMEGA

$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portd = Output
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4

Enable Interrupts '1 activate internal timer

Config Date = Mdy , Separator = / '2 you have some choices here
Config Clock = Soft '3 – note uses internal timer

Date$ = "06/24/09" '4 set the date using the Bascom created variable
Time$ = "23:59:56" '5 Bascom created variable to store the time

Cls
Cursor Off

Do
 Locate 1 , 1
 Lcd Time$; " " ; Date$ '6 display the two strings on the LCD
Loop
End

453

This next program introduces the 1 second interrupt called sectic and the built in Bascom routine to find the day of the week

‘SoftClockTrialDemoProgam2.bas
$crystal = 8000000
$regfile = "m8535.dat"
Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Output
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
Grnled Alias Portd.7

Enable Interrupts
Config Date = Mdy , Separator = /
Config Clock = Soft , Gosub = Sectic '1 - every second automatically interrupt the main dprogram and go and what is in the subrotuine sectic
Dim Strweekday As String * 10 '2 – a string holds texst so we can display the day of the week
Dim Bweekday as byte
Dim strmonth as String * 10
Date$ = "06/24/09"
Time$ = "23:59:56"
Cls
Cursor Off
Do
 Locate 1 , 1
 Lcd Time$; " " ; Date$
 Locate 2 , 1
 Lcd _sec ;” “; _min;” “ ; _hour ; _day ; _month ; _year '3 – these are the other internal Bascom variables you can use

 Bweekday = Dayofweek() '4 – this Bascom function gives us a number representing which day of the week a date is
 Strweekday = Lookupstr(bweekday , Weekdays) '5 – WOW – a neat function to look up a table of values, so
 Strmonth – lookupstr(_month, Months)
 Locate 3 , 1
 Lcd Bweekday ; " = " ; Strweekday '6 display the day of week, first the number of the day, then the string we looked up
 Lcd _month ; " = " ; Strmonth '7 display the month using lookup as well!
Loop
End

454

Sectic: '8 – every second your program will stop its noral execution of commands and come here
 Toggle Grnled '9 Toggle means, change from 0 to 1 or 1 to 0
Return

Weekdays: '10 – this is not program code but fixed data put into the flash program memory for the program to use
Data "Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" , "Saturday" , "Sunday"
 Months:
Data “”, “January”, “February”, …

Other neat Bascom functions include:
' DayOfWeek, DayOfYear, SecOfDay, SecElapsed, SysDay, SysSec ,SysSecElapsed

455

Read a switch and change the time using our own simple debounce function

'SoftClockTrialDemoProgam4.bas
$crystal = 8000000
$regfile = "m8535.dat"

Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Input
Red_sw Alias Pind.2
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4
Enable Interrupts
Config Date = Mdy , Separator = /
Config Clock = Soft
Date$ = "06/24/12"
Time$ = "23:59:56"

Cls
Cursor Off
Do
 If Red_sw = 0 Then Gosub Red_pressed '1put the code into a subroutine not in the main loop this makes the main loop easier to read
 Locate 1 , 1
 Lcd Time$; " " ; Date$
Loop
End

Red_pressed:
 Waitms 25 '2 wait for any contact bounce to stop (these are cheap switches we use and can bounce a lot)
 Do '3 wait for switch release
 Loop Until Red_sw = 1
 Incr _min '4 note the position of this statement (the min increases after the switch is released)
 If _ min > 59 then _min=0 '5 if we increase the mins to 60 then it must go back to 0.
Return

456

33.2 Analogue seconds display on an LCD

In this case the analogue is a bar graph that changes with the seconds on the clock.

'--
' 1. Title Block
' Author: B.Collis
' Date: 25 June 2009
' File Name: softclock4.bas
'--
' 2. Program Description:
' declaration of subroutines and
' passing values to a subroutine
'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000
$regfile = "m8535.dat"
$hwstack = 32
$swstack = 16 'needed to increase this from the default of 8
$framesize = 24

'4. Hardware Setups
Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Input

Config Date = Mdy , Separator = /
Config Clock = Soft

'5. Hardware Aliases
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0
Config Lcd = 20 * 4

'6. initialise hardware
Enable Interrupts
Cls
Cursor Off

457

'7. Declare variables
Dim Row As Byte

'8. Initialise variables
Date$ = "06/24/09" ‘start time and date
Time$ = "23:59:56"
Row = 2 ‘row of lcd to display bar graph on

' subroutine that accepts 2 values, the x=number of lines to draw, y=row)
Declare Sub Displaybars (x As Byte , Y As Byte)

'10. Program starts here
Do
 Locate 1 , 1
 Lcd Time$; " " ; Date$
 Call Displaybars(_sec , Row)
Loop
End

'11. Subroutines
Sub Displaybars(x As Byte , Y As Byte)

 'this generic routine displays vertical bars along the lcd
 ' 1 bar per digit from 1 to 100
 ' every 5th and 10th bar is bigger
 ' Special LCD Characters
 Deflcdchar 1 , 32 , 32 , 16 , 16 , 16 , 16 , 32 , 32
 Deflcdchar 2 , 32 , 32 , 24 , 24 , 24 , 24 , 32 , 32
 Deflcdchar 3 , 32 , 32 , 28 , 28 , 28 , 28 , 32 , 32
 Deflcdchar 4 , 32 , 32 , 30 , 30 , 30 , 30 , 32 , 32
 Deflcdchar 5 , 32 , 1 , 31 , 31 , 31 , 31 , 1 , 32
 Deflcdchar 6 , 1 , 1 , 31 , 31 , 31 , 31 , 1 , 1

 'variables needed within this sub
 Local Lines As Byte
 Local Fullblocks As Byte
 Local Temp As Byte
 Local Flag As Byte
 Lines = 0
 Fullblocks = 0
 Temp = 0
 Flag = 0

 'start at beginning of the line
 Locate Y , 1

 'Check If Data is within limits (1-100)
 If X > 100 Then
 Lcd " PROBLEM:DATA>100 "
 Flag = 1 'problem so don’t display
 End If
 If X = 0 Then
 Flag = 1 'zero so don’t bother to display
 Lcd Spc(20) ' just put in 20 spaces

458

 End If

 If Y > 4 Then
 Flag = 1 'problem so don’t display
 End If

 If Flag = 0 Then 'no problem so display
 'find out how many display blocks need complete filling
 Fullblocks = X - 1
 Fullblocks = Fullblocks / 10
 'fill up the full blocks
 For Temp = 1 To Fullblocks
 Lcd Chr(5)
 Lcd Chr(6)
 Next

 'find out how many more lines to display
 Temp = Fullblocks * 10
 Lines = X - Temp
 'draw the partial block bars
 If Lines < 6 Then '
 Select Case Lines
 Case 1 : Lcd Chr(1) 'draw 1 line
 Case 2 : Lcd Chr(2) 'draw 2 lines
 Case 3 : Lcd Chr(3) 'draw 3 lines
 Case 4 : Lcd Chr(4) 'draw 4 lines
 Case 5 : Lcd Chr(5) 'draw 5 lines
 End Select
 Lcd " "
 Else
 Lcd Chr(5) 'draw 5 lines
 Select Case Lines
 Case 6 : Lcd Chr(1) 'draw 1 line
 Case 7 : Lcd Chr(2) 'draw 2 lines
 Case 8 : Lcd Chr(3) 'draw 3 lines
 Case 9 : Lcd Chr(4) 'draw 4 lines
 Case 10 : Lcd Chr(6) 'draw 5 lines
 End Select
 End If

 'fill to the end with spaces
 Incr Fullblocks
 Incr Fullblocks
 While Fullblocks < 11
 Lcd " "
 Incr Fullblocks
 Wend
 End If
End Sub

459

33.3 LCD big digits

In the exercise above large text was to be displayed on the LCD, however it was static, i.e. it wasn’t
changeable using the program. To display large text on the LCD that is changeable by the program we
need to be able to create any character at any location on the display.

This does not mean that we have to setup the letter A at 1,1 in one subroutine and 1,2 in the next and 1,3
in the next. That would be very inefficient; we will ue a variable to determine where on the display the A
will be. So in a program we might have the code

Digitpos=1
Gosub dispA
and
digitpos = 5
gosub dispT

If we wanted to display the time on the LCD this subroutine might be
used. First the program must extract the digits from each of hours and
minutes. e.g. 23:57 is made up of 2x10 hours and 3 hours, and 5x10
minutes and 7 minutes.
Using knowledge of maths with byte type varibles (there are no fractions)
we can divide the variable _hour by 10, to get the value we want.
Dim I as byte ‘ a temporary variable
I = _hour/10 ‘ e.g. if _hour = 23 then I will be 2
To get the units of hours we use the mod command, which gives us the
remainder of a division in byte math.
I = _hour mod 10 ‘e.g. if _hour = 23 then I will be 3

Show_bigtime:

 'find the digit in the tens of hours position

 I = _hour / 10 'e.g. 19/10 = 1 (byte math!!)

 Digitpos = 1

 Gosub Show_bigdigit

 'find the digit in the units of hours position

 I = _hour Mod 10 'e,g. 19mod10 = 9 (finds remainder)

 Digitpos = 5

 Gosub Show_bigdigit

 'find the digit in the tens of minutes position

 I = _min / 10 'e.g. 21/10 = 2 (byte math!!)

 Digitpos = 11

 Gosub Show_bigdigit

 'find the digit in the units of minutes position

 I = _min Mod 10 'e.g 21mod10 = 1 (finds remainder)

 Digitpos = 15

 Gosub Show_bigdigit

 'display the seconds in the bottom corner of the display

 Locate 4 , 19

 If _sec < 10 Then Lcd "0"

 Lcd _sec

Return

460

This routine doesn’t have all 10 digits shown in the flowchart, however it
would need all of them as in thelisting below

Show_bigdigit:

 If I = 0 Then Gosub Disp0

 If I = 1 Then Gosub Disp1

 If I = 2 Then Gosub Disp2

 If I = 3 Then Gosub Disp3

 If I = 4 Then Gosub Disp4

 If I = 5 Then Gosub Disp5

 If I = 6 Then Gosub Disp6

 If I = 7 Then Gosub Disp7

 If I = 8 Then Gosub Disp8

 If I = 9 Then Gosub Disp9

Return

461

Disp0:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

Full Listing of the test program

'---

'Title Block

'Author: BCollis

'Date : May 2010

'File name: BigDigitTest.V3

'---

$crystal = 8000000 'speed of processing

$regfile = "m8535.dat" 'our micro

'--

'setup/configure hardware

Config Porta = Input

Config Portb = Input 'switches connected here

Config Pina.4 = Output 'backlight

'bascom internal features and functions to make a clock in software

462

'requires 32,768 Hz crystal on PortC.6 and PortC.7

Config Date = Dmy , Separator = /

Config Clock = Soft , Gosub = Sectic 'with 1 second interrupt configured

Enable Interrupts 'starts the clock

'setup connection of LCD to micro

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 =

Portc.5 , E = Portc.1 , Rs = Portc.0

Config Lcd = 20 * 4

'these characters are used to build the bigdigits

Deflcdchar 1 , 32 , 32 , 32 , 1 , 3 , 7 , 15 , 31

Deflcdchar 4 , 31 , 15 , 7 , 3 , 1 , 32 , 32 , 32

Deflcdchar 2 , 32 , 32 , 32 , 31 , 31 , 31 , 31 , 31

Deflcdchar 3 , 32 , 32 , 32 , 16 , 24 , 28 , 30 , 31

Deflcdchar 5 , 1 , 3 , 7 , 15 , 31 , 32 , 32 , 32

Deflcdchar 6 , 31 , 31 , 31 , 31 , 31 , 32 , 32 , 32

Deflcdchar 7 , 1 , 3 , 7 , 15 , 31 , 31 , 31 , 31

Deflcdchar 0 , 31 , 30 , 28 , 24 , 16 , 32 , 32 , 32

' Harware Aliases

Lcdbacklight Alias Porta.4

Piezo Alias Portb.0

Yel_btn Alias Pinb.3

Red_btn Alias Pinb.4

Blu_btn Alias Pinb.5

Blk_btn Alias Pinb.6

White_btn Alias Pinb.7

'8. initialise hardware

Cls 'Clears screen

Cursor Off 'no cursor to be displayed on lcd

Set Lcdbacklight 'turn on LCD backlight

'--

' Declare Constants

Const Delay_time = 100

'--

' Declare Variables

Dim Digitpos As Byte

Dim Seccount As Word

Dim I As Byte

' Initialise Variables

Date$ = "22/07/10" 'preset time on powerup

Time$ = "03:10:00"

Digitpos = 1

463

'--

' 12. Program starts here

Do

 Digitpos = 1

 For I = 0 To 9

 Gosub Show_bigdigit

 Waitms 100

 Next

 Gosub Show_smalltime

 Wait 1

 Gosub Show_bigtime

 Wait 1

Loop

'--

' Subroutines

Show_smalltime: 'Display time in small digits so that title

 Locate 2 , 4 'and the time can fit in to the lcd.

 Lcd "Time: "

 Lcd Time$; ""

Return

Show_bigtime:

 'find the digit in the tens of hours position

 I = _hour / 10 'e.g. 19/10 = 1 (byte arithmentic!!)

 Digitpos = 1

 Gosub Show_bigdigit

 'find the digit in the units of hours position

 I = _hour Mod 10 'e,g. 19mod10 = 9 (finds remainder)

 Digitpos = 5

 Gosub Show_bigdigit

 Locate 2 , 9

 Lcd Chr(6)

 Locate 3 , 9

 Lcd Chr(2)

 'find the digit in the tens of minutes position

 I = _min / 10 'e.g. 21/10 = 2 (byte arithmentic!!)

 Digitpos = 11

 Gosub Show_bigdigit

 'find the digit in the units of minutes position

 I = _min Mod 10 'e.g 21mod10 = 1 (finds remainder)

 Digitpos = 15

 Gosub Show_bigdigit

 'display the seconds in the bottom corner of the display

 Locate 4 , 19

 If _sec < 10 Then Lcd "0"

 Lcd _sec

Return

464

Show_bigdigit:

 If I = 0 Then Gosub Disp0

 If I = 1 Then Gosub Disp1

 If I = 2 Then Gosub Disp2

 If I = 3 Then Gosub Disp3

 If I = 4 Then Gosub Disp4

 If I = 5 Then Gosub Disp5

 If I = 6 Then Gosub Disp6

 If I = 7 Then Gosub Disp7

 If I = 8 Then Gosub Disp8

 If I = 9 Then Gosub Disp9

Return

Disp0:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

Disp1:

 'line 1

 Locate 1 , Digitpos

 Lcd " "

 Lcd Chr(1)

 Lcd " "

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(5)

 Lcd Chr(255)

 Lcd " "

 'line 3

 Locate 3 , Digitpos

 Lcd " "

 Lcd Chr(255)

 Lcd " "

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(6)

 Lcd Chr(6)

 Lcd Chr(6)

Return

Disp2:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(6)

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(7)

 Lcd Chr(6)

 Lcd Chr(0)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(6)

 Lcd Chr(6)

 Lcd Chr(6)

Return

Disp3:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd " "

 Lcd Chr(2)

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd " "

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

465

Disp4:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(2)

 Lcd " "

 Lcd " "

 'Line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(255)

 Lcd Chr(255)

 Lcd Chr(255)

 Locate 4 , Digitpos

 Lcd " "

 Lcd Chr(6)

Return

Disp5:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(2)

 Lcd Chr(2)

 Lcd Chr(2)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd Chr(2)

 Lcd Chr(2)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(2)

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

Disp6:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'Line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

Disp7:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd " "

 Lcd Chr(4)

Return

Disp8:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd Chr(2)

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

466

Disp9:

 'line 1

 Locate 1 , Digitpos

 Lcd Chr(1)

 Lcd Chr(2)

 Lcd Chr(3)

 'line 2

 Locate 2 , Digitpos

 Lcd Chr(255)

 Lcd " "

 Lcd Chr(255)

 'line 3

 Locate 3 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(255)

 'line 4

 Locate 4 , Digitpos

 Lcd Chr(4)

 Lcd Chr(6)

 Lcd Chr(0)

Return

Sectic:

 Incr Seccount
Return

467

34 Resistive touch screen

The resistive touch screen is made of several layers all transparent.

There are two resitive layers that when pressed
together conduct. The resistance is measured by
passing a current through one layer and
measuring the voltage on the other layer.The first
stage is to wire the 4 connections to the
microcontroller, at least two adjacent pins must be
connected to the ADC input pins.

468

Following are the flowcharts for the routines to read the touch screen coordinates and then convert these
to a grid position.

469

get the analog value
for one of the i/p's

2nd pair o/p
1 high
1 low

1st pair i/p

2nd pair i/p

1st pair o/p
1 high
1 low

get the analog value
for one of the i/p's

 X_coords = grid pos 0 Y
N

 X_coords = grid pos 1 Y
N

 X_coords = grid pos 2 Y
N

grid_x = 0

grid_x = 1

grid_x = 2

return

Read
Touchpad

Coordinates

Convert Touchpad
Coordinates to Grid Position

 X_coords = grid pos 0 Y
N

 Y_coords = grid pos 0 Y
N

 Y_coords = grid pos 1 Y
N

 Y_coords = grid pos 2 Y
N

grid_y= 0

grid_y = 10

grid_x = 8

grid_x = 9

grid_y = 20

 X_coords = grid pos 8 Y
N

 Y_coords = grid pos 8 Y
N

 Y_coords = grid pos 0 Y
N

grid_y = 70

grid_y = 80

grid_pos = grid_x+grid_y

return

470

'--
' 1. Title Block
' Author: B.Collis
' Date: April 2008
' File Name: touchscreen_V2.bas
'--
' 2. Program Description:
' Touch Screeen on PortA.5 to PortA.7
'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$map
$crystal = 8000000 'the speed of the micro
$regfile = "m8535.dat" 'our micro, the ATMEGA8535-16PI
'--
' 4. Hardware Setups
' 5. Hardware Aliases
' 6. initialise ports so hardware starts correctly
' DDRA is the internal register that controls the ports
Ddra = &B00000000 'all pins set as inputs
'LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'ADC
Config Adc = Single , Prescaler = Auto
Start Adc
'--
' 7. Declare Constants
'--
' 8. Declare Variables
Dim X_coord As Word
Dim Y_coord As Word
Dim I As Byte
Dim J As Byte
Dim Gridposition As Byte
Dim Character As String * 2
' 9. Initialise Variables

'--
' 10. Program starts here
Cursor Off
Cls
Do
 Gosub Readtouchcoords 'get the values for the touch area
 Locate 1 , 1
 Lcd "x=" ; X_coord ; " " 'display x-coordinate
 Locate 2 , 1
 Lcd "y=" ; Y_coord ; " " 'display y-coordinate
 Gosub Getgridposition 'turn coordinates into grid
 Locate 3 , 1
 Lcd " "
 Locate 3 , 1
 If Gridposition < 90 Then 'only if valid press
 Lcd Gridposition ; " "
 If Gridposition < 40 Then 'only lookup if valid character
 Character = Lookupstr(gridposition , Characters)
 Lcd Character ; " "
 End If
 Waitms 500 'holds the value on the screen a bit
 End If
Loop

471

End

'--
' 11. Subroutines

Getgridposition:
'returns a grid number from 0 to 89
'depending on where touch is within the touch area
'otherwise returns 90
'_______________________________
'| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|
'|10|11|12|13|14|15|16|17|18|19|
'|20|21|22|23|24|25|26|27|28|29|
'...
'|70|71|72|73|74|75|76|77|78|79|
'|80|81|82|83|84|85|86|87|88|89|
'_______________________________
'the values below were worked out by trial and error!
 Select Case X_coord
 Case 100 To 170 : I = 0
 Case 171 To 270 : I = 1
 Case 271 To 360 : I = 2
 Case 361 To 450 : I = 3
 Case 451 To 530 : I = 4
 Case 531 To 610 : I = 5
 Case 611 To 700 : I = 6
 Case 701 To 790 : I = 7
 Case 791 To 870 : I = 8
 Case 871 To 999 : I = 9
 Case Else : I = 90
 End Select
 Select Case Y_coord
 Case 100 To 240 : J = 80
 Case 241 To 320 : J = 70
 Case 321 To 410 : J = 60
 Case 411 To 500 : J = 50
 Case 501 To 580 : J = 40
 Case 581 To 670 : J = 30
 Case 671 To 750 : J = 20
 Case 751 To 850 : J = 10
 Case 851 To 920 : J = 0
 Case Else : J = 90
 End Select
 Gridposition = I + J
 If Gridposition > 89 Then Gridposition = 90
Return

472

Readtouchcoords:
'finds the position of a touch on a 4 wire resistive touch pad
'first by making 1 pair of wires outputs and measuring
'one of the others as an analogue to digital input
'then swaps the 2 i/p's for the 3 o/p's and repeats the process
 Ddra.4 = 1 'output
 Ddra.5 = 0 'input
 Ddra.6 = 1 'output
 Ddra.7 = 0 'input
 Set Porta.4 '1=5V
 Reset Porta.6 '0=0V
 Waitms 10 'short delay to settle pins
 X_coord = Getadc(5) 'somevalue from 0 & 1023

 Ddra.4 = 0 'input
 Ddra.5 = 1 'output
 Ddra.6 = 0 'input
 Ddra.7 = 1 'output
 Set Porta.5 '1= 5V
 Reset Porta.7 '0=0V
 Waitms 10 'short delay to settle pins
 Y_coord = Getadc(4) 'somevalue from 0 & 1023
Return

'each character below maps to one of the grid positions in the first 4 rows
Characters:
Data "q" , "w" , "e" , "r" , "t" , "y" , "u" , "i" , "o" , "p"
Data "a" , "s" , "d" , "f" , "g" , "h" , "j" , "k" , "l" , " "
Data " " , "z" , "x" , "c" , "v" , "b" , "n" , "m" , " " , " "
Data "0" , "1" , "2" , "3" , "4" , "5" , "6" , "7" , "8" , "9"

473

34.1 Keeping control so you dont lose your ‘stack’

As students begin to develop projects they seldom take a big picture approach to what is required; often a
system’s components are seen as separate objects that will just fit together and the important
relationships (interdependencies) between these objects are missed. In practice this is seen when a
project is started with a simple or familiar I/O component such as an LCD and code is written for that
device. Then another I/O device is added to the project such as a temperature sensor or a switch and
more code is written; then another I/O device is added; at some stage though the programming begins to
break down. Many of the I/O functions may be coded at this stage but there is little appreciation for the
overriding control nature of the system as it has not been planned from the beginning.

Often around this stage the project will have a number of subroutines, and a problem arises where the
program crashes after it has been running for a short time or after a certain number of things have

happened such as switch
presses. A common fault that
causes this is treating subroutine
calls (GOSUBs) in a similar way
to GOTO statements (which are
not allowed). In a microcontroller
there is a portion of the RAM set
aside by the compiler as the
STACK, it is used by the
compiler to manage program
flow. It exists as a portion of
RAM after the variables and may
grow downwards towards the
end of RAM. When a subroutine
is entered, the stack is used to
remember the address in main
memory where code was running

so that when the subroutine exits the program may restart at the correct address in the main code.

When a program
leaves a subroutine
for another
subroutine the
stack grows,
ultimately however
when too many
subroutines are
called the stack
overflows around
into the top of RAM
overwriting
variables.

After some time helping students with their code I have recognised this as “my program crashes after I
press the switch 6 times” or “after a while it just stops working”. It is before this stage that the designer
needs to step back and redesign the control process for the project.

RAM

sub 1

removed

saved
STACK

address in main loop

VARIABLES
X
Y

temperature
position

Program
Main Loop

sub 1

sub 2

RAM

sub 1

sub 1

sub 2

sub 2
program crashes!

Program
Main Loop

VARIABLES
X
Y

temperature
position
STACK

address in main loop

address in main loop

address in main loop

address in main loop
no room on stack so it writes

over the variables in RAM

saved

saved

saved

saved

474

35 System Design Example – Temperature Controller
Here is a more complex system that we will develop the software for

1. Define a conceptual statement for the solution to the problem, e.g.
The system will monitor temperature inside a room and display it on an LCD, an alarm will sound
for 45 seconds if it goes below a user preset value. A light will stay flashing until reset. If not reset
within 5 minutes the alarm will retrigger again. If the temperature rises at any time then the alarm
will automatically reset.

2. Draw a system block diagram of the hardware (identify all the major sub-systems)

3. Research and identify the interfaces to the system e.g.

a. An LM35 temperature sensor
b. A 2 line x 16 character LCD
c. A flashing light that can be seen from 6 meters away
d. A speaker with sufficient volume to be heard in the next room
e. A keypad for entering values

4. Draw interface circuits for each of the interfaces
5. Build the interfaces one at a time, design test subroutines for them and test them thoroughly

475

6. Problem decomposition stage: break the software for the system down into successive sub-

systems, until the sub-systems are trivial (simple) in nature. In this diagram the systems function
has been broken down into 4 parts of which one has been broken down further.

7. Design the logic flow for the solution using flow or state diagrams
Test your logic thoroughly! If you miss an error now you will take 219.2 times longer to fix it than if
you do not fix it now!!!

476

Here is a possible flowchart for the temperature system.

This is a small but very complex flowchart and it is not a good solution for a number of reasons:
A. It is difficult to manage all the relationships to get the logic absolutely correct, it took a while to think

it through and it may not be exactly right yet!
B. Because the loops in the flowchart overlap it is not possible to write a program without the use of

goto statements which are poor (terrible, abysmal, horrible) programming practice and not a feature
of the higher level languages you will meet in the future.

C. Once the code is written it is difficult to maintain this code as it lacks identifiable structure

It is OK to use flowcharts for small problems with only a few variable tests but by attempting to put too
much logic into a flowchart you astronomically increase the difficulty of turning it into program code; if
a flowchart has more than 3 or 4 loops or the loops cross over each other as above use an alternative
method!

477

36 Advanced programming - state machines
State machines are very different to flowcharts; a flowchart looks primarily at the process operating within
a system a state machine looks primarily at the state the system is in and then the processes that support
those states. These diagrams have been used extensively in industry for modelling systems and software
behaviour for a long time. They are one of the 7 behaviour modelling diagrams in the UML (unified
modelling language) specification from OMG (Object Management Group – a consortium of software
organsiations). State machines are much better at modelling software than flowcharts because our
systems react to inputs and events that can vary at anytime whereas a flowchart is not as responsive to
this type of behaviour. Note in UML specification 2.2 OMG have changed the name from statechart back
to state machine diagram so if you hear the term statechart it means the same thing.

36.1 Daily routine state machine

Earlier we looked at a flowchart for a daily routine. Lets develop a state machine for a school day.
Here are some different states you might be in.

You transition from one state to another as the day progresses, The black circle represents which state
you start the day in.

478

Transitions normally occurred when triggered by some event or condition. Here is one possible transition
condition and an associated transition action.

The transition condition is time=6:45 AND day=school day.
The transition actions are throw alarm clock across room and stay in bed.
If we develop this a little further we might see the following state machine develop.

Now although this is a state machine it is not necessary to use a state machine to develop this system;
you can see that there are no choices in it so a simple flowchart would be just as useful. It does however
show how to start using state machines.

479

36.2 Truck driving state machine
Lets look at a second example for a state machine based system and introduce how a state machine is
more suitable for reactive systems and so much easier than a flowchart.

Think of a truck driving around town and its speed as it moves from one set of traffic lights to another.
It could be represented by a graph of speed versus time. The truck has 4 states:
A: stationary
B: accelerating
C: constant speed of 50km/hr
D: decelerating

Here is the beginning state machine, note the flow of the diagram..

time

speed

A

B

C

D

480

Here is the state machine with some actions within each state. These are things that have to be repeated
while the machine is in that state.

Here is the state machine with transitions, some conditions and their associated actions.
The transitions are triggerd by some change in the environment.

The flow at this stage is still very linear, however that doesn’t really describe what happens in real life.

481

It is now that we will explore what a state machine can do for us that a flowchart cannot!
A flowchart is ok for routine systems which have fixed choices, however they are not useful for what
embedded systems such as microcontrollers are used for: REACTIVE systems. Flowcharts cannot
handle reactive systems very well. In our case what happens if while the truck is accelerating the driver
sees another red traffic light ahead. According to our state machine he must continue unitl 50Km/hr and
then he can react to another red light. We can easily modify our state machine with another transistion to
add this detail.

482

The same exists if during the state of decelerating for a red light the light changes to green. According to
our state machine he must stop first. Another transition will fix this easily.

These two example systems we have looked might be described as a macro view, what people and
devices are doing. We are interested in a micro view, what is actually happening inside an electronic
black box, for us that means modelling what software is doing within our microcontroller and a state
machine id perfect for this.

483

36.3 Developing a state machine

Developing States (starts with defining outputs)
To identify the different states for your machine, identify the different states of the various output devices
e.g. temperature alarm system outputs:

 LCD – displays temperature / displays setting of the temperature alarm value

 Light – on / off

 Alarm – on / off

If you have an LCD, you might plan each different screen of the LCD (which could include instructions)

 Displaying the temperature

Temperature now 22c

to set alarm

* to reset alarm

Test A=light B=sound

 Modifying the temperature alarm

Alarm on below 18c

A to increase

B to decrease

D=save&exit C=cancel

(Note that if you hear the word ‘mode’ this also means the state of a device)

Developing Actions, what are the actions the device needs to carryout e.g.

 Control output devices
o turn light on
o turn light off
o sound alarm
o display temperature
o show main instructions screen
o show temperature setting screen

 Monitor input devices
o Read a keypad
o Read the temperature sensor

 Control functions
o start the timer
o stop the timer
o zero the timer

When do these actions have to take place?

 Repeated all the time within a state
o Read keypad
o Read temperature
o Display temperature

 Only once in the transition between states
o Turn LED on
o Turn LED off
o Save a new setting

Some actions could be put into either category, but some couldn’t e.g.

 What is the effect of putting the action clear_the_lcd inside a state compared to inside a transition?

 What is the effect of putting the action led_on inside a state compared to inside a transition?

 What is the effect of putting the action zero_timer inside a state compared to inside a transition?

Developing Transitions

 Testing inputs and variables to see if some condition is true or not
o Was a particular key or button pressed
o Has a variable reached a particular value

484

36.4 A state machine for the temperature alarm system

Here are the 4 states for the temperature controller and a diagram representation of it

State 1: measure and display
temperature

State 2: light and alarm are both on

State 3: light only is on

State 4: modify the preset temp alarm
setting

Each state includes the names of ations(subroutines) that will be called to do different things. It is good
practice not to put code into the state, so that the control structure is not confused with control of I/O
devices. Also if any subroutine is complex it may require a flowchart or even another state machine to
plan it.

The second part of the process is to build the transitions between the states and what conditions cause

them to occur. The
black circle indicates the
starting state for when
power is applied.

Here one transition is
shown for when the
temperature reading has
fallen below the set
level.

A condition is in square
brackets [], it looks like
any test that would be
part of an if…then,
while… wend or do loop
until…

Along with the condition
are the actions you want
the program to carry out
after one state has
stopped execution and
before the next state
starts executing. An
action could be a call to
a subroutine or a very
short one or two lines of
code. Actions are
optional, but almost all

(though not all) transitions will have conditions

485

Here are all the states and transitions for our temperature system.

State 1: display temperature
 Conditions: temp < setting, keypad to change setting
State 2: light and alarm are on
 Conditions: reset pressed, temperature <= setting, 45 second time out
State 3: light on
 Conditions: reset pressed, temperature <= setting, 5 minute time out
State 4: modify temp setting
 Conditions: finished changing setting

Note that this state machine has a central state and it can be seen that there are a transitions into and
out of this state. Not all systems will have a central state like this.

This style of problem solving overcomes the issues identified relating to flowcharts

 They are intuitive – in fact clients can easily understand them

 Errors are seen easily as the relationships between states are logically laid out.

 It is actually very easy to write the code to match this diagram using if-then and while-wend statements

 The code is easily maintained in the future and flows logically when it is written making it easier to
remember what you did or for others to read and maintain.

 Students can very easily develop quite sophisticated software solutions using this process.

 If you closely follow the structure using subroutine names then you can use the software I have
developed to create your code for you in BASCOM_AVR!!!

486

States
Each unique state of your device is represented by a block in a state machine diagram
To identify the different states for your machine, identify the different states of the various output devices
e.g. temperature alarm system outputs:

 LCD – displays temperature / displays setting of the temperature alarm value

 Light – on / off

 Alarm – on / off

If you have an LCD, you might plan each different screen of the LCD (which could include instructions)

 Displaying the temperature

Temperature now 22c

to set alarm

* to reset alarm

Test A=light B=sound

 Modifying the temperature alarm

Alarm on below 18c

A to increase

B to decrease

D=save&exit C=cancel

(Note that if you hear the word ‘mode’ this also means the state of a device)

Actions, what are the actions the device needs to carryout e.g.

 Control output devices
o turn light on
o turn light off
o sound alarm
o display temperature
o show main instructions screen
o show temperature setting screen

 Monitor input devices
o Read a keypad
o Read the temperature sensor

 Control functions
o start the timer
o stop the timer
o zero the timer

When do these actions have to take place?

 Repeated all the time within a state
o Read keypad
o Read temperature
o Display temperature

 Only once in the transition between states
o Turn LED on
o Turn LED off
o Save a new setting

Some actions could be put into either category, but some couldn’t e.g.

 What is the effect of putting the action clear_the_lcd inside a state compared to inside a transition?

 What is the effect of putting the action led_on inside a state compared to inside a transition?

 What is the effect of putting the action zero_timer inside a state compared to inside a transition?
Transitions

 Testing inputs and variables to see if some condition is true or not
o Was a particular key or button pressed
o Has a variable reached a particular value

487

36.5 Using System Designer software to design state machines

 After opening System
Designer add a state
machine, then some states
and then transitions.

Adding transitions by clicking
on a state and drawing with
the mouse (make sure the
state is not selected first)

Identify the transition arrow
that indicates program flow
outwards towards the state
ModifyTemprSetting.
Having drawn the transition
line between the two states,
double clicking on the line
allows the user to add
conditions that trigger the
transition and any actions
that might need to be
performed between state
changes. In this case the
state change is triggered
when a keypad is read and
the value setTemprbtn is
returned. Key will be a
variable and setTemprbtn
will be a constant in our
program.
As seen in this diagram
colours and even fonts can
be changed (by right clicking
on the
diagram/state/transition)

488

 Transition conditions and actions are edited by double clicking on a transition

Transitions that don’t change state are common in state machines

489

36.6 State machine to program code

Once the initial logic of the state machine is planned the program code can be written. To write the code in
BASCOM a state variable is dimensioned and each state is assigned a value as a constant.

dim state as byte

Const st_light_alarm_on = 1
Const st_Light_On = 2
Const st_displ_tempr = 3
Const st_modify_tempr_setting = 4
Using constants rather than values within program code makes the code so much easier to read.

The starting state is determined by initialising the state variable

state = st_displ_tempr

In the main body of the code a do-loop is used to enclose all the states, which are coded using while-
wend statements.

Do
 while state = st_light_alarm_on
 wend

 while state = st_light_on
 wend

 while state = st_displ_tempr
 wend

 while state = st_modify_tempr_setting
 wend

Loop

Note: so far we have predominantly used do-loop-until as a looping control in our programs.
The while –wend is a little easier to follow in this instance but both do exactly the same thing.
So we could replace the the while-wend’s above with
Do
Loop Until state <> st_Light_On

490

Program flow is controlled by the value of the variable state.
When the value of state is 4 (St_measure_displ_tempr) the code within that while wend will be executed.

If the value of state changes then a different section of code will be executed.

 dim state as byte

Const st_light_alarm_on = 1
Const st_light_on = 2
Const st_displ_tempr = 3
Const st_modify_tempr_setting = 4

state = st_measure_displ_tempr

Do

 while state = st_light_alarm_on
 wend

 while state = st_light_on
 wend

 while state = st_displ_tempr
 wend

 while state = st_modify_tempr_setting
 wend

Loop

491

The next stage is to add calls to subroutines within each state, for example:
 while state = st_Measure_displ_tempr

 gosub ReadLM35
 gosub DisplayTempr
 gosub ReadButtons
 wend

Next the code for the transitions is written, these have conditions (if-then-end if) tests that trigger or cause
one state to transition to the next:

while state = st_displ_tempr
 gosub ReadLM35
 gosub DisplayTempr
 gosub ReadButtons

 if btn = setTempr then
 state = st_modify_tempr_setting
 end if
 if tempr < setTempr then
 state = st_Light_Alarm_On
 GOSUB startTimer
 end if
 wend

When a condition or trigger for a state change has occurred, the state variable takes on a new value, the
currently executing while-wend will continue on to completion, then from within the main do-loop the new
state is identified and the appropriate while-wend is entered.

In this example there are many shortcuts that proficient and competent programmers could take; however
using a very structured process means that novice student programmers begin good practices early on
with strong naming conventions and logical practices. It makes my job as teacher less difficult as I can
debug code more easily and will therefore grow gray less quickly.

492

36.7 The power of state machines over flowcharts

Having coded the system and got it working any changes or new features are easily implemented. In the
current state machine a user can only exit ModifyTemprSetting state by saving the change. What if the
client adds the specification that the user should be able to either save or exit without saving. A cancel or
nosave button could be implemented very easily? This is shown via the change in this version .

A user could add this code to the state machine program very easily.

 while state = st_modify_tempr_setting
 gosub DisplayOldTempr
 gosub DisplayNewTempr
 gosub ReadButtons
 gosub ModifyTempr
 if btn=setTempr then
 state = st_measure_dspl_tempr
 GOSUB SaveNewTempr
 end if

 if btn = cancel then
 state = st_displ_tempr
 end if
Wend

493

The Bascom Program for our temperature alarm system

Const st_Light_Alarm_On = 1

Const st_Light_On = 2

Const st_measure_displ_tempr = 3

Const st_Modify_Tempr_Setting = 4

Do

 while state = st_Light_Alarm_On

 gosub ReadLM35

 gosub DisplayTempr

 gosub ReadButtons

 if secs > 45 then

 state = LightOn

 GOSUB AlarmOff

 end if

 if tempr > setTempr then

 state = St_displ_tempr

 GOSUB LightAlarmOff

 end if

 if btn=reset then

 state = St_measure_displ_tempr

 GOSUB LightAlarmOff

 end if

 wend

 while state = st_Light_On

 gosub ReadLM35

 gosub DisplayTempr

 gosub ReadButtons

 if btn=reset then

 state = St_measure_displ_tempr

 GOSUB lightOff

 end if

 if tempr>setTempr then

 state = St_displ_tempr

 GOSUB lightOff

 end if

 if secs>300 then

 state = St_measure_displ_tempr

 GOSUB lightOff

 end if

 wend

 while state = st_measure_display

 gosub ReadLM35

 gosub DisplayTempr

 gosub ReadButtons

 if tempr < setTempr then

 state = LightAlarmOn

 GOSUB startTimer

 end if

 if btn=setTempr then

 state = ModifyTemprSetting

 end if

 wend

 while state = st_modify_tempr_setting

 gosub DisplayOldTempr

 gosub DisplayNewTempr

 if btn=setTempr then

 state = St_measure_displ_tempr

 GOSUB SaveNewTempr

 end if

 wend

Loop

'*********************************

subroutines

ReadLM35:

Return

DisplayTempr:

Return

ReadButtons:

Return

DisplayOldTempr:

Return

DisplayNewTempr:

Return

startTimer:

Return

lightOff:

Return

AlarmOff:

Return

SaveNewTempr:

Return

LightAlarmOff:

Return

Labels are
used for states

rather than
numbers to

facilitate
program

readability

The state
variable is used

to manage
which code
segment is
executed

Changing to
another state only

occurs when
specific conditions

happen.

The rest of the
program controls

all the I/O and is in
subroutines which
are then easier to
write and check

individually

494

36.8 Bike light – state machine example

These rear lights for bicycles have different modes of operation. In
this example they are called states:
State1: LEDs_OFF
State2: LEDs_ON
State3: ALL_FLASH
State4:SEQUENCE_FLASH (1-2-3-4-1-2-…)

The light ‘transitions’ between the 4 states every time the
‘condition’ occurs (button is pressed).

Here is a first state machine to describe the process

This needs some further development and subroutines have been added to each state to handle the
various activities.

uC

First press of button
 - all leds come on

2nd press
- all leds flash together

3rd press
- sequence pattern

4th press
- leds off

System Block Diagram

495

There is an issue with transitioning between states as microcontrollers are very quick and our button
pressing skills by comparison are very slow! So we need to wait during the transition from one state to
another so that the micro will not skip states. We setup an’ action’ to wait for the button to be released,
and every state transition needs it.

The actual code for the routine might look like

Waitforbuttonup:
 Do
 Waitms debouncedelay
 Loop until button=1
 Waitms Debouncedelay
Return

496

36.9 Bike light program version1b

Using system designer the following code was produced
Dim State As Byte
'REMEMBER TO DIMENSON ALL YOUR VARIABLES HERE
Const st_LEDs_off = 1
Const st_LEDs_Sequence_Flash = 2
Const st_LEDs_On = 3
Const st_LEDs_Flash = 4
'REMEMBER TO DEFINE ALL YOUR CONSTANTS HERE
state = st_LEDs_off
Do
 while state = st_LEDs_off
 gosub LEDs_Off
 if button=0 then
 state = LEDs_On
 GOSUB waitforbuttonup
 end if
 wend

 while state = st_LEDs_On
 gosub LEDs_On
 if button=0 then
 state = LEDs_Flash
 GOSUB waitforbuttonup
 end if
 wend

 while state = st_LEDs_Flash
 gosub LEDs_Flash
 if button=0 then
 state = LEDs_Sequence_Flash
 GOSUB waitforbuttonup
 end if
 wend

 while state = st_LEDs_Sequence_Flash
 gosub LEDs_sequence_Flash
 if button=0 then
 state = LEDs_off
 GOSUB waitforbuttonup
 end if
 wend

Loop

State 1

State 2

State 3

State 4

497

'*********************************
’subroutines
LEDs_Off:
Return

LEDs_On:
Return

LEDs_Flash:
Return

LEDs_sequence_Flash:
Return

waitforbuttonup:
Return

Seeing the code led me to the realisation that during the subroutine sub_LEDs_sequence_Flash the
micro needs to check for a button press from the user or it is possible that it might miss it while it is doing
the full sequence of flashing each LED individually.

There are no delays in sub_LEDs_Off and sub_LEDs_On as they have no need for them.
However sub_LEDs_sequence_Flash and sub_LEDs_Flash need some form of delay. During
sub_LEDs_Flash if the delays are short enough then we can get away without checking the switch.
However during sub_LEDs_sequence_Flash we will need to check the switch .

Bike light state machine V2 solves this by introducing some new states for the sequence flashing.

See how easy the state machine is to modify; and the code is not hard to modify either.

All these
subroutines

need code to
be written for

them

BUT WAIT A
SECOND!!

498

36.10 Bike light program version2
'State Variables

Dim state as byte

Const st_leds_on = 0

Const st_leds_off = 1

Const st_leds_flash = 2

Const st_F1 = 3

Const st_F2 = 4

Const st_F1 = 5

Const st_F4 = 6

State = st_leds_off 'set the initial state

Do

 '*************** state st_leds_on ***************

 While state = st_leds_on

 If button=0 Then

 state = st_leds_flash

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_leds_off ***************

 While state = st_leds_off

 If button=0 Then

 state = st_leds_on

 Gosub leds_on

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_leds_flash ***************

 While state = st_leds_flash

 Gosub leds_on

 Gosub short_wait

 Gosub leds_off

 Gosub short_wait

 If button=0 Then

 state = st_F1

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_F1 ***************

 While state = st_F1

 Gosub led1_on

 Gosub short_wait

 state = st_F2

 If button=0 Then

 state = st_leds_off

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_F2 ***************

499

 While state = st_F2

 Gosub led2_on

 Gosub short_wait

 state = st_F1

 If button=0 Then

 state = st_leds_off

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_F1 ***************

 While state = st_F1

 Gosub led1_on

 Gosub short_wait

 state = st_F4

 If button=0 Then

 state = st_leds_off

 Gosub wait_for_button_up

 End If

 Wend

 '*************** state st_F4 ***************

 While state = st_F4

 Gosub led4_on

 Gosub short_wait

 If button=0 Then

 state = st_leds_off

 Gosub wait_for_button_up

 End If

 state = st_F1

 Wend

Loop

End

'**

'Subroutines

wait_for_button_up:

Return

leds_on:

Return

short_wait:

Return

leds_off:

Return

led1_on:

Return

led2_on:

Return

led4_on:

Return

500

37 Alarm clock project re-developed
Let’s try building a digital alarm clock.

37.1 System Designer to develop a Product Brainstorm

Start with a brainstorm of the milestones (major steps) that you will need to carry out

There are some important attributes (characteristics) of the system to describe that will make designing
the hardware and software easier later on.

 Build a simple picture of the device with all its inputs and outputs

 A conceptual statement gives a one line overview of what is to be designed

 Physical Attributes: these describe a bit more detail about what the device looks like

 Operational Attributes: these describe how a user operates the device.

501

A button on the toolbar in system designer will generate a written brief built from the information in the
diagram.

System Description (Brief)

Conceptual Statement:
A digital alarm clock for personal use with three different alarm times

Physical Attibutes:
4 Line LCD to display time
piezo for alarm sounds
three buttons to set the time and different alarms.

Physical Attributes for Digital Alarm Clock
 It contains:
 -red btn
 -LCD
 -yel btn
 -blu btn
 -Piezo

Digital Alarm Clock interactions with Normal user are:
 -The piezo will sound a tune when the clock reaches the set alarm time
Normal user interactions with Digital Alarm Clock are:
 -The red button is used to select which setting will be changed
The Blu button will increase the setting
The Yellow button will decrease the setting

502

37.2 Initial block diagram for the alarm clock

Using System Designer the block diagram is created to express the electrical connections to the microcontroller but without full detail of the schematic
diagram which includes things like current limit resistors and pullup resistors.

Note the following
devices:
LM35 - a
temperatiure sensor
– produces an
analog rather than
binary signal and
requires an ADC
input.(ADC inputs to
the microcontroller
have yellow pins)

LDR – produces an
analog rather than
binary signal and
requires an ADC
input.

The xtal32 is a
32.768Khz crystal
for making a clock,
when it is added the
variables
associated with it
are automatically
created in Bascom
and are also shown
in the table.

503

The BasicCode button in System Designer will generate the following code setup for your program, which
is taken directly from the various parts of the block diagram.

' Project Name: AlarmClock

' created by: B.Collis - first created on Mon Aug 15 2011

' block diagram name: BD_1

' Date:8/22/2011 8:49:15 PM

' Code autogenerated by System Designer from www.techideas.co.nz

'***

'Compiler Setup

$crystal = 8000000

$regfile = "m16def.dat"

'***

'Hardware Configs

Config PORTA = Output

Config PORTB = Output

Config PORTC = Output

Config PORTD = Output

Config PINB.2 = Input 'blu_btn

Config PIND.2 = Input 'red_btn

Config PIND.3 = Input 'yel_btn

Config PINA.0 = Input 'LM35

Config PINA.1 = Input 'LDR

'ADC config

Config Adc = Single , Prescaler = Auto ', Reference = AVCC/internal/...

Start Adc

'bascom internal features and functions to make a clock in software

'uses 32,768 Hz crystal on PortC.6 and PortC.7

Config Date = Dmy , Separator = /

Config Clock = Soft , Gosub = sectic 'with 1 second interrupt configured

'Character LCD config

Config Lcdpin=pin , Db4 = PORTB.4 , Db5 = PORTB.5 , Db6 = PORTB.6 , Db7 = PORTB.7 , E = PORTB.1 , Rs = PORTB.0

Config LCD = 20 * 2

'***

'Hardware aliases

'inputs

blu_btn Alias PINB.2

red_btn Alias PIND.2

yel_btn Alias PIND.3

LM35 Alias PINA.0

LDR Alias PINA.1

'outputs

lcd Alias PORTB

Piezo Alias PORTD.4

grn_led Alias PORTA.7

blu_led Alias PORTA.6

red_led Alias PORTA.5

'***

504

37.3 A first (simple) algorithm is developed

It is important to understand some of the things the device will have to be doing ‘inside’.

Note that this is an initial algorithm without a great deal of features, it is a good idea to build your ideas up
as you go as they will be easier to develop.

The inputs and outputs you have created in the block digram will appear here making it easier to think
about the functions you need to describe.

If you are aware of any Variables you will need to keep data then add them as well at this time.

505

37.4 A statemachine for the first clock

When starting out using state machines it is important that you take on a little piece of advice!

Here the statemachine consists of only one state.

It doesn’t take long to gain a lot of confidence and understanding in using statecharts and it wont be
long before you are producing large ones.

THEN you want to turn them into program code and you end up in a heap on the floor cursing your

teacher because your compiler just told you that your code has 1,967 errors in it!

I have seen it before where students look at this, throw their hands up in horror and go back to trying
to rescue their old program because it only had one error in it (even though I told them it would never
work)
SO START WITH LITTLE STEPS – your very first real program should have only 1or 2 states in
it!!

 YOU HAVE BEEN WARNED!

506

The code for this state is very straightforward

Note:
There is an overall do-loop
A state consists of a While –Wend loop.
There is a variable named state to store the current state in.
To change state the process is simple, change the value of the state variable!
Code has been added to one of the subroutines to make it work as needed

'**

'State Variables

Dim state as byte

Const st_disp_time = 0

State = st_disp_time 'set the initial state

Do

 '*************** state st_disp_time ***************

 While state = st_disp_time

 Gosub Display_time_on_lcd

 If red_btn = 0 Then Gosub increase_hours

 If yel_btn=0 Then Gosub increase_minutes

 Wend

Loop

End

'**

'Subroutines

Display_time_on_lcd:

Return

increase_hours:

 incr _hour //increase by 1

 if _hour > 23 then _hour = 0 //fix rollover of hours

 waitms 150 //delay between increments

Return

increase_minutes:

Return

'**

'Interrupt Routines

507

37.5 Alarm clock state machine and code version 2

'**

'State Variables

Dim state as byte

Const st_powerup = 0

Const st_display_time = 1

State = st_powerup 'set the initial state

Do

 '*************** state st_powerup ***************

 While state = st_powerup

 Gosub display_instructions

 If sec_count>5 Then st_display_time

 Wend

 '*************** state st_display_time ***************

 While state = st_display_time

 Gosub disp_current_time

 If yelbtn=0 Then Gosub increase_minutes

 If red_btn=0 Then Gosub increase_hours

 Wend

Loop

End

'**

'Subroutines

display_instructions:

Return

disp_current_time:

Return

increase_minutes:

Return

increase_hours:

Return

'**

'Interrupt Routines

sectic:

 incr sec_count

Return

These are the first 2 stages of development
of a state machine for an alarm clock, only 2
states and some transitions have been
added.

Students must keep progressive versions of
plans such as state machines to show their
ongoing development work.

508

37.6 Token game – state machine design example

BRIEF: The game starts with a welcome screen then after 2 seconds the instruction screen appears. The
game waits until a button is pressed then a token T is randomly placed onto the LCD. 4 buttons are
required to move the player P around the LCD: 8(up), 4(left), 6(right) and 2(down) to capture the token.
Note that the player movements wrap around the screen.
When the player has captured a token, another is randomly generated. After capturing 5 tokens the time
taken is displayed, after capturing 10 tokens display the time taken.

 T ▲

 ◄ P ►

 ▼

Here is the state machine for this game (note in this version after collecting 10 tokens nothing happens).

(UMLPAD)

In the program there is a state variable that manages the current state and controls what the program is
doing at any particular time. This state variable is altered by the program as various events occur (e.g. a
token has been captured) or by user input (pressing a button to restart the game).

509

dim state as byte
'REMEMBER TO DIMENSON ALL YOUR VARIABLES HERE
Const got5tokens = 1
Const HitEnemy = 2
Const YouLose = 3
Const InPlay = 4
Const HighScores = 5
Const level2Instructions = 6
Const got10tokens = 7
Const got1token = 8
Const YouWin = 9
Const Welcome = 10
Const Instructions = 11
'REMEMBER TO DEFINE ALL YOUR CONSTANTS HERE
state = Welcome

Do

 while state = got5tokens
 gosub DispScore
 state = level2Instructions
 wend

 while state = HitEnemy
 state = YouLose
 wend

 while state = YouLose
 state = Welcome
 wend

 while state = InPlay
 gosub refreshDisplay
 gosub ReadButtons
 if xPos=TokenX and yPos=TokenY then
 state = got1token
 end if
 if btn=right then
 state = InPlay
 GOSUB GoRight
 end if
 if btn=left then
 state = InPlay
 GOSUB GoLeft
 end if
 if btn=down then
 state = InPlay
 GOSUB GoDown
 end if
 state = HitEnemy
 if btn=Up then
 state = InPlay
 GOSUB GoUp
 end if
 wend
 while state = HighScores

In the main do-loop
Remember the

subroutines to run are
within the While-Wend

statements

To change what a program is doing
you don’t Gosub to a new

subroutine. You change the state
variable to a new value, the current

subroutine is then completed.

The While_Wend statements
detect the state change and control
which new subroutines are called.

The variable state is a 'flag', 'signal'

or 'semaphore' in computer
science. It is a very common

technique. We set the flag in one
part of the program to tell another

part of the program what to do.

Notice how the reading of buttons
and processing of actions relating
to the buttons are different things

510

 state = Welcome
 wend

 while state = level2Instructions
 if btn=start then
 state = InPlay
 GOSUB MakeAToken
 end if
 wend

 while state = got10tokens
 gosub DispScore
 state = YouWin
 wend

 while state = got1token
 gosub DispScore
 if TokenCount=10 then
 state = got10tokens
 end if
 state = InPlay
 GOSUB MakeAToken
 if TokenCount=5 then
 state = got5tokens
 end if
 wend

 while state = YouWin
 state = HighScores
 wend

 while state = Welcome
 if secs>2 then
 state = Instructions
 end if
 wend

 while state = Instructions
 gosub DispInstructions
 if btn=start then
 state = InPlay
 GOSUB startTimer
 end if
 wend

Loop

'*********************************
subroutines

511

Disp_welcome:
 Locate 1 , 1
 LCD " Welcome to the TOKEN GAME"
 Wait 2
 State = Instructions
 Cls
Return

Disp_instrustions:
 Cls
 State = Instructions
Return

Disp_instructions:
 Locate 1 , 1
 LCD "capture the tokens "
 Locate 2 , 1
 LCD "4=left, 6=right"
 Locate 3 , 1
 LCD "2=up, 8=down "
 Locate 4 , 1
 LCD "D to start"
Return

Got1:
 Cls
 Incr Tokencount
 Select Case Tokencount
 Case 1 To 4:
 Locate 1 , 10
 LCD "you got " ; Tokencount ‘display
number of tokens
 Waitms 500 ‘wait
 Cls
 State = Inplay ‘restart play
 Gosub Makeatoken
 Case 5:
 State = Got5tokens
 End Select
Return

Got5:
 Cls
 Locate 1 , 2
 LCD " YOU GOT 5 TOKENS"
 Locate 2 , 1
 Seconds = Hundredths / 100 'seconds
 LCD " in " ; Seconds ; "."
 Seconds = Seconds * 100
 Hundredths = Hundredths - Seconds
 LCD Hundredths ; "seconds"
 State = Gameover
Return

Got10: ’nothing here yet!!
Return

Makeatoken:
 'puts a token on the lcd in a random position
 Tokenx = Rnd(rhs) 'get a random
number from 0 to Xmax-1
 Tokeny = Rnd(bot_row) 'get a random
number from 0 to Ymax-1
 Incr Tokenx 'to fit 1 to Xmax
display columns
 If Tokenx > Rhs Then Tokenx = Rhs 'dbl
check for errors
 Incr Tokeny 'to fit 1 to Ymax
disp rows
 If Tokeny > Bot_row Then Tokeny = Bot_row
'dbl check for errors
 Locate Tokeny , Tokenx 'y.x
 LCD "T" 'Chr(1)
Return

512

Go_left:
 Select Case Xpos
 Case Lhs : 'at left hand side of lcd
 Oldx = Xpos 'remember old x position
 Xpos = Rhs 'wrap around display
 Oldy = Ypos 'remember old y position
 Case Is > Lhs 'not at left hand side of lcd
 Oldx = Xpos 'remember old x position
 Xpos = Xpos - 1 'move left
 Oldy = Ypos 'remember old y position
 End Select
Return

Go_right:
 Select Case Xpos
 Case Is < Rhs:
 Oldx = Xpos
 Xpos = Xpos + 1
 Oldy = Ypos
 Case Rhs:
 Oldx = Xpos
 Xpos = Lhs
 Oldy = Ypos
 End Select
Return

Go_up:
 Select Case Ypos
 Case Top_row :
 Oldy = Ypos
 Ypos = Bot_row
 Oldx = Xpos
 Case Is > Top_row
 Oldy = Ypos
 Ypos = Ypos - 1
 Oldx = Xpos
 End Select
Return

Go_down:
 Select Case Ypos
 Case Is < Bot_row :
 Oldy = Ypos
 Ypos = Ypos + 1
 Oldx = Xpos
 Case Bot_row :
 Oldy = Ypos
 Ypos = Top_row
 Oldx = Xpos
 End Select
Return

These routines keep track of player movements.
We always know the current position and the old

position for the refresh display routine.

This gets a little complicated when the player
moves off the screen, e.g. when going from left

to right it wraps around to the left hand side.

e rhs of the display to the lhs of the display.

513

38 Advanced window controller student project
One of my year13 students found a client who wanted an automatic window controller for their classroom.
Here is the system block diagram

38.1 Window controller state machine #1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

ATMEL
AVR

ATMEGA32

H Bridge 12 Motor

1 2 3 A
4 5 6 B
7 8 9 C
* 0 # D

window is closed switch

1

2

3

4

8

7

6

5

Real
Time
Clock

LCD

Classroom Window Controller
tempr > openTempr then windows open
tempr < closeTempr then windows close

only works Monday-Friday
only works from 8AM to 4PM

after 4PM Mon-Fri windows close

LM35
tempr
sensor

5V Regulator

12V DC in

window is open switch

514

38.2 Window
controller state

machine #3.

It has grown in
complexity as he realised
that he needed to add
more states for the motor
while it was on and in the
process of closing and
opening. The window He
also added controls at his
clients request for
manual open and close.

515

38.3 Window
controller state

machine #5

5th and final state
machine for the project.
Allowed control of the
time and temperature
settings AND IT
WORKED!

This is a very messy
diagram as it suffers from
‘state explosion’. It is with
a diagram such as this that
we see the limitations of
our process; a true UML
statechart allows for
hierarchies of states (states
within states) and would
reduce the complexity of
this process immensely.
To learn about this read a
book on UML, unified
modelling language.
Have a look at…
http://www.agilemodeling.c
om/artifacts/stateMachineDi
agram.htm

516

38.4 Window controller program

'---
'WindowControllerV5b.uss
'Created using StateCharter
'13/09/2009 8:47:12 p.m.
'SK 2008
'This program controls a motor
'to automatically open and close
'a classroom window
'---
'COMPILER DIRECTIVES
$Crystal = 8000000
$regfile = "m8535.dat"
'---
'HARWARE SETUPS
Config PortA=input
Config PortB=output
Config PortC=output
Config PortD=output
'HARWARE ALIASES
switchOpened alias pina.1
switchClosed alias pina.2

'---
'VARIABLES
dim state as byte
dim key as byte
dim temp as byte
dim hour as byte
dim minute as byte
dim rtn_state as byte
'REMEMBER TO INITIALISE YOUR VARIABLES HERE

'---
'STATE CONSTANTS
Const st_manualopened = 1
Const st_adjustWindowTime = 2
Const st_closed = 3
Const st_setDeg = 4
Const st_closing = 5
Const st_setTime = 6
Const st_opening = 7
Const st_manualopen = 8
Const st_opened = 9
Const st_manualclose = 10
Const st_manualclosed = 11
'OTHER CONSTANTS
const manualopen = 10 ' Keypad A
const manualclose =11 ' Keypad B
const setTime =12 ' Keypad C
const adjustTime =13 ' Keypad D
const auto = 14 ' Keypad *
const setDeg =15 'Keypad #

517

'---
'PROGRAM STARTS HERE
Do
 while state = st_manualopened
 gosub subMotoroff
 gosub subLcdManualOpen
 gosub subReadTime
 gosub subDisplayTime
 gosub subMeasureTemp
 gosub subDisplayTemp
 if key=adjustTime then
 state = st_adjustWindowTime
 rtn_state = st_manualopened
 end if
 if key=setTime then
 state = st_setTime
 rtn_state = st_manualopened
 end if
 if key=setDeg then
 state = st_setDeg
 rtn_state = st_manualopened
 end if
 if key=manualclose then state = st_manualclose
 if key=auto then state = st_opened
 wend

 while state = st_adjustWindowTime
 gosub subReadKeypad
 gosub subAdjustTime
 gosub subWriteTime
 if key=adjustTime and rtn_state = st_closed then state = st_closed
 if key=adjustTime and rtn_state = st_manualopened then state = st_manualopened
 if key=adjustTime and rtn_state = st_manualclosed then state = st_manualclosed
 if key=adjusttime and rtn_state = st_opened then state = st_opened
 wend

518

while state = st_closed
 gosub subMeasureTemp
 gosub subDisplayTemp
 gosub subReadTime
 gosub subDisplayTime
 gosub subReadKeypad
 gosub subLcdClosed
 gosub subMotoroff
 if key=setDeg then
 state = st_setDeg
 rtn_state = st_closed
 end if
 if key=manualclose then state = st_manualclose
 if key=manualopen then state = st_manualopen
 if temp>25 and hour>8 and minute>30 then state = st_opening
 if key=adjustTime then
 state = st_adjustWindowTime
 rtn_state = st_closed
 end if
 if key=setTime then
 state = st_setTime
 rtn_state = st_closed
 end if
 wend

 while state = st_setDeg
 gosub subReadKeypad
 gosub subAdjustOpendeg
 gosub subAdjustClosedeg
 if key=setDeg and rtn_state = st_closed then state = st_closed
 if key=setDeg and rtn_state = st_manualopened then state = st_manualopened
 if key=setDeg and rtn_state = st_manualclosed then state = st_manualclosed
 if key=setDeg and rtn_state = st_opened then state = st_opened
 wend

 while state = st_closing
 gosub subReadTime
 gosub subDisplayTime
 gosub subReadKeypad
 gosub subMotorreverse
 if switchclosed = 1 then state = st_closed
 if key=manualopen then state = st_manualopen
 if key=manualclose then state = st_manualclose
 wend

519

while state = st_setTime
 gosub subReadKeypad
 gosub subAdjustOpenTime
 gosub subWriteTime
 gosub subAdjustCloseTime
 gosub subWriteTime
 if key=setTime and rtn_state = st_closed then state = st_closed
 if key=setTime and rtn_state = st_manualopened then state = st_manualopened
 if key=setTime and rtn_state = st_manualclosed then state = st_manualclose
 if key=setTime and rtn_state = st_manualopen then state = st_manualopen
 if key=setTime and rtn_state = st_opened then state = st_opened
 wend

 while state = st_opening
 gosub subReadTime
 gosub subDisplayTime
 gosub subReadKeypad
 gosub subMotorforward
 if key=manualopen then state = st_manualopen
 if switchopened = 1 then state = st_opened
 if key=manualclose then state = st_manualclose
 wend

 while state = st_manualopen
 gosub subMotorforward
 gosub subMeasureTemp
 gosub subDisplayTemp
 gosub subDisplayTime
 if key=setTime then
 state = st_setTime
 rtn_state = st_manualopen
 end if
 if switchopened = 1 then state = st_manualopened
 wend

520

while state = st_opened
 gosub subMeasureTemp
 gosub subDisplayTemp
 gosub subReadTime
 gosub subDisplayTime
 gosub subReadKeypad
 gosub subLcdOpened
 gosub subMotoroff
 if key=setTime then
 state = st_setTime
 rtn_state = st_opened
 end if
 if key=setDeg then
 state = st_setDeg
 rtn_state = st_opened
 end if
 if key=manualclose then state = st_manualclose
 if key=adjustTime and rtn_state=st_opened then state = st_adjustWindowTime
 if temp<18 and hour>3 and minute>10 then state = st_closing
 if key=manualopen then state = st_manualopen
 wend

 while state = st_manualclose
 gosub subMotorreverse
 gosub subMeasureTemp
 gosub subDisplayTemp
 gosub subDisplayTime
 if switchclosed = 1 then state = st_manualclosed
 if key=setTime then
 state = st_setTime
 rtn_state = st_manualclosed
 end if
 if key=auto then state = st_closed
 wend

 while state = st_manualclosed
 gosub subMotoro0ff
 gosub subLcdManualClosed
 gosub subReadTime
 gosub subDisplayTime
 gosub subMeasureTemp
 gosub subDisplayTemp
 if key=adjustTime then
 state = st_adjustWindowTime
 rtn_state = st_manualclosed
 end if
 if key=setDeg then
 state = st_setDeg
 rtn_state = st_manualclosed
 end if
 if key=manualopen then state = st_manualopen
 if key=auto then state = st_closed
 wend

521

Loop

'---
'SUBROUTINES

subAdjustClosedeg:
Return

subAdjustCloseTime:
Return

subAdjustOpendeg:
Return

subAdjustOpenTime:
Return

subAdjustTime:
Return

subDisplayTemp:
Return

subDisplayTemp:
Return

subDisplayTime:
Return

subLcdClosed:
Return

subLcdManualClosed:
Return

subLcdManualOpen:
Return

subLcdOpened:
Return

subMeasureTemp:
Return

subMotorforward:
Return

subMotoro0ff:
Return

subMotoroff:
Return

522

subMotorreverse:
Return

subReadKeypad:
Return

subReadTime:
Return

subWriteTime:
Return

523

39 Alternative state machine coding techniques
The While-Wend method of coding a state machine is not the only option available to you. Here is
an alternative code segment for control of states using a Select-Case-End-Select methodology

Do

 Select Case State
 Case State_1

Gosub Actions1a
Gosub Actions1b
Gosub Actions1c

 Case State_2: Gosub Actions2
 Case State_3 :

Gosub Actions3a
Gosub Actions3b

 Case State_4 : Gosub Actions4
 Case State_5 : Gosub Actions5
 Case State_6 : Gosub Actions5

 End Select
Loop

This code is similar to the previous examples using while wend in that you can still have multiple
actions within states. The difference though is that there are no actions perfomed between states.
In code like this if you want to perform an action between two states you need to implement another
state inbetween the two states as in the example below.

In the state machine above there is an action
ACTION_1, that must happen between states,
(remember an action is code that will be run only
once between states)

In this second state machine Action_1 has been
replaced by a state state_action_1, and a
second transition that has no condition attached
to it.

While State1 is executing once condition_1 is
met the state will change to Action_1. This code
will be executed only once and the state will
change automatically to State2.

524

Do
 while state = State1
 If Condition = 1 Then
 state = State2
 Gosub Action_1
 end if
 wend

 while state = State2
 If Condition = 2 Then State = State3
 wend

 while state = State3
 If Condition = 3 Then State = State1
 wend
Loop

Action_1:
 'actions for this state
Return

State1_actions:
 'actions for this state
Return

State2_actions:
 'actions for this state
Return

State3_actions:
 'actions for this state
Return

Do
 Select Case State
 Case State1: Gosub State1_actions
 Case State_action_1: Gosub Actions
 Case State2: Gosub State2_actions
 Case State3: Gosub State_3_actions
 End Select
Loop

State_1_actions:
 'actions for this state
 If Condition = 1 Then State = State_action_1
Return

Actions:
 'actions for this state
 State = State2
Return

State_2_actions:
 'actions for this state
 If Condition = 2 Then State = State3
Return

State_3_actions:
 'actions for this state
 If Condition = 3 Then State = State1
Return

Action_1 will
run between
state1 and
state2, once
condition =1
has happened

Condition
testing is
within the
while wend

Action_1 is a
state on its
own

Condition testing
has moved to the
subroutines to keep
the select case
code tidy, note
there is no
condition testing in
sub actions: for
state_action_1

525

40 Complex - serial communications

Parallel communications is sending data all at once on many wires and serial communications is all
about sending data sequentially using a single or a few wires. With serial communications the data
is sent from one end of a link to the other end one bit at a time. There are 2 ways of classifying
serial data communications.

 1. as either Simplex, half duplex or full duplex
 And 2. as either synchronous or asynchronous

40.1 Simplex and duplex

In serial communications simplex is where data is only ever travelling in one direction, there is one
transmitter and one receiver.

In half duplex communications both ends of a link will have a transmitter and receiver but they take
turns sending and receiving. A combined transmitter and receiver in one unit is called a transceiver.

In full duplex both ends can send and receive data at the same time.

40.2 Synchronous and asynchronous

Imagine sending the data 1010 serially, this is quite straight forward, the sender sends a 1 ,then a 0,
then a 1, then a 0. The receiver gets a 1, then a 0, then a 1, then a 0; No problems.

Now send 1100 the sender sends a 1 then a 1 then a 0 then a 0, the receiver gets a one then a
zero, hey what happened!!

The receiver has no way of knowing how long a 1 or 0 is without some extra information. In an
asynchronous system the sender and receiver are setup to expect data at a certain number of bits
per second e.g. 19200, 2400. Knowing the bit rate means that the spacing is known and the data is
allocated a time slot, therefore the receiver will know when to move on to receiving the next bit.

Synchronous communications is where a second wire in the system carries a clock signal, to tell
the receiver when the data should be read.

526

Every time the clock goes from 0 to 1 the data is available at the receiver. Now there is no confusion
about when a 1 is present or a zero. The receiver checks the data line only at the right time.

40.3 Serial communications, Bascom and the AVR

The AVR has built in serial communications hardware and Bascom has software commands to use
it.

 USART: (universal synchronous and asynchronous receiver transmitter), which when used
with suitable circuitry is used for serial communications via RS232. It has separate txd
(transmit data) and rxd (receive data) lines, it is capable of synchronous (using a clock line)
and asynchronous (no clock line), it is capable of full duplex, both transmitting and receiving at
the same time.

Computers have RS232 (or comm) ports and the AVR can be connected to this (via suitable
buffer circuitry)

 SPI: (serial peripheral interface) which has 2 data lines and 1 clock line, these are the three

lines used for programming the microcontroller in circuit as well as for communications
between the AVR and other devices. This is a synchronous communications interface, it has a
separate clock line. It is also full duplex. The 2 data lines are MISO (master in slave out) and
MOSI (master out slave in) these are full duplex, because data can travel on the 2 lines at the
same time.

Bascom also has libraries of software commands built into it for two other communications protocols

 I2C: (pronounced I squared C) this stands for Inter IC bus, it has 1 data line and 1 clock line.
Because it has only 1 data line it is half duplex, the sender and receiver take turns, and
because it has a clock line it is synchronous.

 Dallas 1-Wire: this is literally 1 wire only, so the data is half duplex, and asynchronous.

527

40.4 RS232 serial communications

RS232/Serial communications is a very popular communications protocol between computers and
peripheral devices such as modems. It is an ideal communication medium to use between a PC and
the microcontroller.

The different parts of the RS232 system specification include the plugs, cables, their functions and
the process for communications. The plugs have either 9 or 25 pins, more commonly today the PC
has two 9 pin male connectors.

There are two data lines one is TXD (transmit data) the other RXD (receive data), as these are
independent lines devices can send and receive at the same time, making the system full duplex.
There is a common or ground wire and a number of signal wires.

There is no clock wire so the system of communications is asynchronous. There are a number of
separate control lines to handle 'handshaking' commands, i.e. which device is ready to transmit,
receive etc.

The AVR microcontroller has built in hardware to handle RS232 communications, the lines involved
are portd.0 (RXD) and portd.1 (TXD). These two data lines however cannot be directly connected to
a PCs RS232 port because the RS232 specification does not use 5V and 0V, but +15V as a zero and
-15V as a one. Therefore a buffer circuit is required, the MAX232 is a common device used for this.

 A connector (DB9-Female) is required for the PC end and a simple 3 way header can be used on the
PCB (SV4 in the diagram)
TXD (PortD.1) will go through the buffer in the Max232 then the header to pin 2 of the DB9
RXD(PortD.0) comes from the buffer of the MAX232 which is connected to pin3 of the DB9

528

The ‘MAX232’ is a common chip used; in the classroom we have the ST232, the capacitors we use
with the ST232 do not need to be polarised and 0.1uF values will do. It will give +/- 8V.

The ST232 (and MAX232) have two sets of buffers so two
separate devices can be connected to the AVR at the same
time. Some ATMega chips have two UARTs and if your
ATMega has only one that is ok as BASCOM has the
software built into it to handle software UARTs.

529

40.5 Build your own RS232 buffer

Why do we need a buffer again?

RS232 is designed to send data over reasonable distances
between different devices that might run on different voltages.

To do this the designers of the specification decided that a
transmitter could send up to +/- 15VDC and a receiver should be
able to reliably detect signals if the voltages were as low as +/-
3VDC.

Note that a ‘1’ is 5V for a microcontroller and -3 to -15 for a
RS232(it is inverted).

It is easy to build a simple
transitor circuit to achieve
this buffering for us (it is
however not a perfect
circuit).

AVR to RS232
When the AVR transmits it
switches from 0V to 5V and
the output to the RS232
actually only switches
between 5V and 0V, this is
outside the RS232
specification of -3V, but it
seems to work OK most of
the time.

RS232 to AVR
The input to the AVR is
more accurate as it
converts the +V input to 0V
and the –V to 5V (note the
diode protects the transistor
by not allowing the base
voltage to go below -0.6V).

530

40.6 Talking to an AVR from Windows XP

There are several different software options for communicating over rs232 from the AVR, the simplest
is the print statement.

print "hello" will send the ASCII text string to the pc. At the pc end there must be some software
listening to the comport, Windows has HyperTerminal already built in to do this.

Open HyperTerminal (normally found in programs/accessories/communications).
Start a new connection and name it comm1

On the next screen make sure you select comm1 as the port.

531

Then setup the following properties, 9600,8, none, 1, none

When you click on OK HyperTerminal can now send and receive using comm1.

If nothing happens make sure the communications is connected.

There are many many different communication programs on the internet to try, Termite is one that is
useful.

532

40.7 Talking to an AVR from Win7

Hyper terminal no longer exists in Windows7, but there are many useful applications that we can use.
Bascom has abuilt in terminal under the options menu.

use the menu (options then communications) to set it up

533

Termite 2.6 is a comprehensive free program

534

40.8 First Bascom RS-232 program

' Hardware Features:
' MAX232 connected to the micro TXD and RXD lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' Program Features:
' print statement
'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
$baud = 9600 'set data rate for serial comms
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 40 * 2 'configure lcd screen
' Hardware Aliases

'--
' Declare Constants
Const Timedelay = 500
'--
' Declare Variables
Dim Count As Byte
' Initialise Variables
Count = 0
'--
' Program starts here
Print "Can you see this"
Do
 Incr Count
 Cls
 Lcd Count
 Print " the value is " ; Count
 Waitms Timedelay
Loop
End 'end program
'--

535

Another useful interface (if you have easy access to the IC) is the DS275. No capacitors just the IC
and a three pin header. I always wire up the three pin headers with ground in the middle, it means
that if you get the wiring wrong all you have to do is unplug it and try it in reverse!

40.9 Receiving text from a PC

' Hardware Features:
' DS275 connected to the micro TXD and RXD lines. then wired to a DB9F.
' Program Features:
' input statement
' string variables
'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$baud = 9600 'set data rate for serial comms
'--
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 40 * 2 'configure lcd screen
' 7. Hardware Aliases
Cls
Cursor Noblink
'--

536

' 9. Declare Constants
Const Timedelay = 2
'--
' 10. Declare Variables
Dim Text As String * 15
' 11. Initialise Variables
Text = ""
'--
' 12. Program starts here
Print "Can you see this"
Do
 Input "type in something" , Text
 Lcd Text
 Wait Timedelay
 Cls
Loop
End 'end program
'--
' 13. Subroutines

40.10 BASCOM serial commands

There are a number of different serial commands in Bascom to achieve different functions, find these
in the help file and write in the description of each one.

Print
PrintBin
Config SerialIn
Config SerialOut
Input
InputBin
InputHex
Waitkey
Inkey
IsCharWaiting
$SerialInput2LCD
$SerialInput
$SerialOutput
Spc

Some AVRs have more than one UART (the internal serial device) and it is possible to have software
only serial comms in Bascom and use
Serin, Serout,
Open
Close
Config Waitsuart

537

40.11 Serial IO using Inkey()

'--
' Title Block
' Author: B.Collis
' Date: 22 Aug 03
'--
' Program Description:
' This program receives characters from the
RS232/comm/serial port of a PC
' and displays them on the LCD
' Hardware Features:
' MAX232 connected to the micro TXD and RXD
lines. then wired to a DB9F.
' LCD on portc - note the use of 4 bit mode and
only 2 control lines

' Program Features:
' print statement
' message buffer
' inkey reads the serial buffer to see if a char has
arrived
' note that a max of 16 chars can arrive before the
program
' automatically prints the message on the LCD
'--
' Compiler Directives (these tell Bascom things
about our hardware)
$crystal = 8000000 'the crystal we
are using
$regfile = "m8535.dat" 'the micro we
are using
$baud = 9600 'set data rate for
serial comms
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Pinb.0 = Input
Config Pinb.1 = Input
Config Portc = Output
Config Portd = Output
Config Pind.2 = Input
Config Pind.3 = Input
Config Pind.6 = Input

538

Config Lcd = 40 * 2 'configure lcd screen
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 ,
Rs = Portc.0

Config Serialin = Buffered , Size = 20 'buffer the incoming data
' 7. Hardware Aliases
Sw_1 Alias Pinb.0
Sw_2 Alias Pinb.1
Sw_3 Alias Pind.2
Sw_4 Alias Pind.3
Sw_5 Alias Pind.6
' 8. initialise ports so hardware starts correctly
'--
' 9. Declare Constants

'--
' 10. Declare Variables
Dim Count As Byte
Dim Char As Byte
Dim Charctr As Byte
Dim Message As String * 16

' 11. Initialise Variables
Count = 0
'--
' Program starts here
Enable Interrupts 'used by the serial buffer
Print "Hello PC"
Cls
Lcd "LCD is ok"
Wait 3
Do
 Debounce Sw_1 , 0 , Sub_send1 , Sub 'when switch pressed
 Debounce Sw_2 , 0 , Sub_send2 , Sub 'when switch pressed
 Char = Inkey() 'get a char from the serial buffer
 Select Case Char 'choose what to do with it
 Case 0 : ' no char so do nothing
 Case 13 : Gosub Dispmessage 'Ascii 13 is CR so show
 Case Else : Incr Charctr 'keep count of chars
 Message = Message + Chr(char) 'add new char
 End Select
 If Charctr > 15 Then 'if 16 chars received
 Gosub Dispmessage 'display the message anyway
 End If
Loop
End 'end program

539

'--
' 13. Subroutines

Sub_send1:
 Print "this is hard work" 'send it to comm port
Return

Sub_send2:
 Print "not really" 'send it to comm port
Return

Dispmessage:
 Cls
 Lcd Message
 Message = ""
 Charctr = 0
 Incr Count 'send some data to the comm port
 Print "you have sent = " ; Count ; " messages"
Return
'--
' 14. Interrupts

Inkey allows you to manage the input of characters yourself, but you have to poll (check) regularly
that a character is there and process it or it will disappear when a new one comes in (the AVR’s
have a USART with error detecting that can inform you if you have missed reading the buffer, you
might want to get to understand that if you are going to do commercial programms). There are
also interrupts built into the AVR for serial USART comms, but these are not implemented in
BASCOM.

540

40.12 Creating your own software to communicate with the AVR

Several student projects have incorporated PC based software that communicates with an AVR.

In this project CZL built a unit that informed remote users in the building that a gateway was on, the
internet was connected and that the wireless network was up.

The receiver consisted of a single box of receiver, decoder and AVR.

At this point we are interested in the PC software. It is written in Visual Basic 6. There isn’t much point in
going into VB6 as it has been superceeded by Visual Studio (currently 2010) and the Expres edition is
available freely from Microsoft.

Internet

Dialup Modem

AVR
TX

Gateway PC

541

40.13 Microsoft Visual Basic 2008 Express Edition

To begin you must understand just a little about how Windows based programs work, their different
parts and what they are called.

Programs you write for a pc make use of the software already on the PC, this way you don’t have to
figure out how to draw lines on the screen and check where the mouse is and how to read and write to
hard drives etc etc.

What we think of a program is a GUI (graphical user
interface) to…

Your functions(subs or subroutines) in your program code
which is written in Visual basic (or C#) which uses …

Microsoft dotnet functions within which use…

Windows operating system functions which requires…

Drivers and hardware such as a PC with an Intel or AMD
microprocessor.

(THIS ISNT THE HARD BIT; THAT COMES IN A FEW

PAGES)

The actual program is called a form, with controls on it.

Textboxes and buttons are examples of
controls on a form

Controls have properties such as a ‘name’
property and a ‘text’ property (things written on
the control) as well as many other properties

Take note of the words GUI, form, control,

textbox, button, property and function.

542

First make sure you have installed the latest version of Microsoft Visual studio and dotnet (free from
www.microsoft .com)

40.14 Stage 1 – GUI creation

From the menu select file then new …

Select Windows form application and name it AVRSimpleComms

543

A blank form will appear where you can add controls.

If you cannot see the form or it disappears at any stage behind new strange looking windows with code
in them, then click on Form1.vb in the solution explorer on the right hand side or select the
Form1.vb(Design) Tab.

Adding a control is easy click on the Toolbox popup on the very left hand side of the screen…

544

Select the Button control and double click it or drag it onto your form.

545

Controls such as buttons have lots and lost of properties.

Click on the button to highlight it, change its size by dragging the corners and locate it in the upper area
of the form.

On the left hand side you should see the properties, find the Name property the default name Button1
is no use to us when programming so change its name to btnOpenPort

We will follow the same simple convention for naming every control, the first three letters tell us what
type of control it is btn for button, this is always in lower case.

The next part of the name tell us a short description of what it is used for OpenPort, we use uppercase
letters to separate the words not spaces.

Remember the whole name btnOpenPort has no spaces in it, starts with lowercase 3 letters to tell us
what sortof control it is.

546

The button btnOpenPort has another property its Text property. Find this and type in
Open Comm1, 9600,8,N,1 – spaces are fine in this.
You can experiment with other properties like colors and fonts as well.

547

Add another control, a TextBox control.

548

Change the Name property to txtSend, txt tells us it is a TextBox control and Send is its purpose, text
to send! We follow the naming convention 3 lower case letters for the type, capital letters for the
following words in the name and NO SPACES!

549

Add a second TextBox control and change its name size, position and text.

550

The last control to add is a hidden one (the user cannot see it). It is a SerialPort contol.
We wont bother to change its name from SerialPort1 as we only need one of these for the whole
program. But do check its properties are correct.

551

The GUI is finished!!! But the program isn’t.
You can run your program (in debug mode) by pressing F5 or the green play button.

Your program will run, you can select buttons and type in text but nothing will happen yet as you have
not written any code.

40.15 Stage 2 – Coding and understanding event programming

Programs in windows
are not sequential as
they are in BASCOM,
they are event driven.
This means that you
write a whole bunch of
what looks like
disconnected functions
(subroutines) without
any overriding control
structure.

Its just that windows
handles all the calling
of these routines.

This means that
nothing happens in
your program until the
user interacts with it.
This is called an event.
An event might be a
mouse click on a
Button or the user
changing text in a
TextBox.

552

To add code to your program double click on the Open Port button in the designer and this new window
will appear.
Note the title of of it. Form1.vb
Also the method (function, sub or subroutine) has been started for you, you just add code within it.

Visual studio is very helpful with the next steps as well, as it has a fantatstic autocomplete feature.
Type ‘if s’ and the drop down menu will appear.

Continue typing ‘if ser’ and the box will show you just a few options.

553

Click on ‘SerialPort1’ and then press the fullstop ‘.’ This will give you the different properties you can
access for the serialport, choose ‘IsOpen’.

Finish typing the full line of text and the comment above it.
MAKE SURE YOU PUT () at the end of the line.
‘IsOpen’ is a property so no (), ‘Open’ is the name of a function, subroutine or method so it has ().

It would be useful to show users of the program if the port is open or not so add some more code.

554

You can run this program now, and if your computer has a Com1 then it should work (if not, it will
crash).

Double click on the other button in the GUI the SEND button, then add the following code. Use Visual
Studio’s autocomplete to help you enter the code.

'if the port is open then send the text from the textbox with a linefeed (Ascii #10) on the

end of it.

If SerialPort1.IsOpen = True Then SerialPort1.Write(txtSend.Text + Environment.NewLine)

The next step is to add code that will allow your program to display incoming text.
This is more tricky. Click on the SerialPort1 control and then on the lightning symbol, this will then list all
the available events for the control. Double click on the DataReceived event.

555

The code window will appear

Then enter the code below. This code is very complex to understand, but it is necessary because of
how Windows multitasks everything. We will not try to understand how it works, just why it is required
and a bit about what it is doing.

Our program must monitor the serialport as well as our Form at the same time because data could
come in while someone was typing text into a textbox. To do this windows creates two threads (parallel
running tasks which are part of the same program) one to monitor the serialport and one for our form.
When we want to pass something from the serial port to the form it must go from one thread to another,
to do this the code below is required.

The program now works!
This is a very short introduction to Visual Basic, we will go on to develop a larger program as well, but if
you are interested in learning more get a book out of the library or jump on the wen and learn more.

Having created this program in Visual Basic, we can also create it in …

556

40.16 Microsoft Visual C# commport application

Here is the same application developed in Visual C# 2008 Express Edition

File-New Project

557

Having created the form, change its Text property to AVR Simple Comms

558

Add the two buttons, two textboxes and serialport

Call the buttons btnOpenPort and btnSend, change their text properties.
Call the textboxes txtSend and txtReceive and change their text properties as well.

559

C# Events
As with VB when you double click on a control, you will then go to the code window and can add code to
the control. The serialport control is different, you must select events in the properties window and add
the DataReceived event.

560

Here is all the code for this program. Add the parts in yellow after you have added the events (don’t try
and add the event code directly, it wont work if you do)

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports;

namespace AVRSimpleComms

{

 public partial class formAVRSimpleComms : Form

 {

 public formAVRSimpleComms()

 {

 InitializeComponent();

 }

 private void btnOpen_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen == false)

 {

 serialPort1.Open();

 }

 if (serialPort1.IsOpen)

 {

 btnOpen.BackColor = Color.LightGreen;

 }

 else

 {

 btnOpen.BackColor = Color.LightPink;

 }

 }

 private void btnSend_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)//can only write out if the port is open

 {

 serialPort1.WriteLine(txtSend.Text + Environment.NewLine);

 }

 }

 private void serialPort1_DataReceived(object sender, SerialDataReceivedEventArgs e)

 {

 txtReceive.Invoke(new EventHandler(delegate

 {processtextin(serialPort1.ReadExisting()); }));

 }

 private void processtextin(string txtstring)

 {

 txtstring = txtstring.Replace('\n', ' '); //remove newline

 txtstring = txtstring.Replace('\r', ' '); //remove carriage return

 txtReceive.Text = txtstring; //display received data

 }

 }

}

Things to note with C# (also C and C++) there is a semicolon at the end of each line

561

40.17 Microcontroller with serial IO.

This AVR based system monitors some input devices and outputs the data from them to the local LCD
as well as via the RS232 port to a PC. It also monitors the serial input to see if there are ant messages
to display on the LCD or to decode to do certain tasks.

Note that the analog inputs are not read and sent all the time just every ½ second. This is achieved
through setting up a counter and counting up to 65000 before reading and sending.

PortC

yellow push button switch

white push button switch

blue push button switch

green push button switch B.1

B.2

B.3

B.0

A.2

A.0

B.4

B.6

B.7

LM35

Tempr

Sensor

LDR

B.5

C.6 C.7

32.768 kHz

Crystal

PortD

Keypad

A.1

A.4

A.5

red push button switch

Speaker

4Line x 20 Char

LCD

Potentiometer

RS232 to PC

562

563

In this case the Bascom program monitos the LDR, LM35, and two switches.
'--
' Title Block
' Author: B.Collis
' Date: Feb 08
' File Name: SerialioSoftUARTver2.bas
'--
' Program Description:
'
' Hardware Features:
' LCD on portc
' 5 buttons on pinb.0,1,2,3,4 , red, yellow, green, blue, white
' 3 LEDs on B5,6,7 , green, yellow ,red
' Buffer Transistors on for SW UART A.5(TXD), A.4(RXD)
'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Input '
Config Porta.5 = Output ' software UART TXD
Config Portb = Input
Config Portb.5 = Output '
Config Portb.6 = Output '
Config Portb.7 = Output '

' LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs =
Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'ADC
'know about the different references or possibly damage your chip!
Config Adc = Single , Prescaler = Auto , Reference = Avcc
Start Adc

' software UART
Open "comA.5:9600,8,n,1" For Output As #1
Open "comA.4:9600,8,n,1" For Input As #2

' hardware aliases
Red_sw Alias Pinb.0
Yel_sw Alias Pinb.1
Grn_sw Alias Pinb.2
Blu_sw Alias Pinb.3
Wht_sw Alias Pinb.4
Set Portb.0 'enable pullup resistors
Set Portb.1
Set Portb.2
Set Portb.3
Set Portb.4
Grn_led Alias Portb.5

The internal UART is on D.0 and D.1,
which are in use for the keypad.
A software UART using A.4 as input
and A.5 for output is configured .

564

Yel_led Alias Portb.6
Red_led Alias Portb.7

' ADC Constants
Const Pot = 0 'getadc(pot)
Const Lm35 = 1 'getadc(lm35)
Const Ldr = 2 'getadc(ldr)
Const False = 0
Const True = 1
'---
' Variables
Dim Tempr As Word
Dim Lightlevel As Word
Dim Potval As Word
Dim Buffer As String * 20
Dim Inputstring As String * 20
Dim Char As Byte
Dim Received As Bit 'flag used to signal a complete receive
Received = False
Dim I As Word
I = 0
'---
'constants
Const Timedelay = 1000
'---
'program starts here
Cls
Cursor Off
Lcd "AVR Data Program"
Print "AVR Data Program"

Do
 'reads all the data coming in to the micro's software uart into a buffer
 ' a buffer is a portion of memory
 Char = Inkey(#2) 'see if there is a character
 If Char > 0 Then 'if there is
 If Char = 13 Then 'if its a Carriage return
 Nop 'ignore it
 Elseif Char = 10 Then 'if Linefeed (signals end of message)
 Inputstring = Buffer 'copy to output
 Buffer = "" 'release the buffer
 Received = True 'signal we have the complete string
 Else
 Buffer = Buffer + Chr(char) 'add new char to buffer
 End If
 End If

 If Received = True Then
 'display the incoming message on the LCD
 Locate 4 , 1
 Lcd Spc(20)
 Locate 4 , 1
 Lcd Inputstring
 'Print Inputstring 'echo the message back to the PC

565

 'process the incoming messages
 If Instr(inputstring , "grnled") > 0 Then Toggle Grn_led
 If Instr(inputstring , "redled") > 0 Then
 Set Red_led
 Waitms 50
 Reset Red_led
 End If
 If Instr(inputstring , "yelledon") > 0 Then Set Yel_led
 If Instr(inputstring , "yelledoff") > 0 Then Reset Yel_led
 Received = False 'signal we have processed the message
 End If

 'send switch press
 If Red_sw = 0 Then
 Waitms 30 'debounce
 Do
 Loop Until Red_sw = 1
 Waitms 10 'debounce
 Print #1 , "RED" ‘send the message to the PC
 End If
 If Yel_sw = 0 Then
 Waitms 30 'debounce
 Do
 Loop Until Red_sw = 1
 Waitms 10 'debounce
 Print #1 , "YEL"
 End If

 'only read the analogue pins occasionally
 If I > 65000 Then
 Tempr = Getadc(lm35) / 2 'approx conversion
 Locate 2 , 1
 Lcd "temperature=" ; Tempr ; " "
 Print #1 , "te=" ; Tempr ' ; at end means send no linefeed
 Lightlevel = Getadc(ldr)
 Locate 3 , 1
 Lcd "lightlevel=" ; Lightlevel ; " "
 Print #1 , "ll=" ; Lightlevel
 I = 0
 End If
 Incr I

Loop
End 'end program
'--
' Subroutines

'--
' Interrupts

566

40.18 PC software (C#) to communicate with the AVR

This program monitrs the Comm port and allows the user to send messages (including the PCs time) to
the AVR.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports; //added this to use serialport

namespace AVRComms

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 //here are the default values, 0 means the first in the collection

 cmbPortName.SelectedIndex = 0; //com1

 cmbBaudRate.SelectedIndex = 5; //9600

 cmbDataBits.SelectedIndex = 1; //8

 cmbParity.SelectedIndex = 0; //none

 cmbStopBits.SelectedIndex = 0; //1

 }

567

 private void btnOpenPort_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen==false)

 {

 // Setup the port as per the combo box settings

 serialPort1.PortName = cmbPortName.Text;

 serialPort1.BaudRate = int.Parse(cmbBaudRate.Text);

 serialPort1.DataBits = int.Parse(cmbDataBits.Text);

 serialPort1.StopBits = (StopBits)Enum.Parse(typeof(StopBits),

 cmbStopBits.Text);

 serialPort1.Parity = (Parity)Enum.Parse(typeof(Parity), cmbParity.Text);

 // try to open the port,

 try

 {

 serialPort1.Open();

 }

 catch (Exception ex)

//if it cannot be opened then

 {

 MessageBox.Show(ex.ToString());

//show us the exception that occurred

 }

 //if it is open then show the dot in the radio button

 if (serialPort1.IsOpen) radPortOpen.Checked = true;

 }

 }

 private void btnClosePort_Click(object sender, EventArgs e)

 {

 //if the port is open close it

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 //if it closed ok then remove dot from radiobutton

 if(serialPort1.IsOpen == false) radPortOpen.Checked = false;

 }

 }

 private void serialPort1_DataReceived(object sender, SerialDataReceivedEventArgs e)

 {

 txtDataRx.Invoke(new EventHandler(delegate

 {

 processtextin(serialPort1.ReadExisting());

 }));

 }

568

private void processtextin(string txtstring)

 {

 txtDataRx.AppendText(txtstring); //display received data

 txtstring = txtstring.Replace('\n', ' '); //remove newline character

 txtstring = txtstring.Replace('\r', ' '); //remove carriage return

 txtstring = txtstring.Trim(); //remove spaces

 if (txtstring.Contains("te=")) //temperature reading

 {

 txtstring = txtstring.Replace("te=", ""); //get rid of the code

 btnTempr.Text =txtstring + " deg C"; //add some text to the end

 }

 if (txtstring.Contains("ll=")) //lightlevel

 {

 txtstring = txtstring.Replace("ll=", ""); //get rid of the code

 try

 {

 int lightlevel = Convert.ToInt32(txtstring);

 if (lightlevel < 20) {btnLDR .BackColor = Color.Sienna ;}

 if (lightlevel > 100) {btnLDR .BackColor = Color.Blue; }

 if (lightlevel > 200) { btnLDR.BackColor = Color.CadetBlue; }

 if (lightlevel > 400) {btnLDR .BackColor = Color.DarkOrange ;}

 if (lightlevel > 500) {btnLDR .BackColor = Color.DarkRed ;}

 btnLDR.Text = lightlevel.ToString();

 }

 catch { }

 }

 if (txtstring.Contains("pv="))

 {

 //txtstring = txtstring.Replace("pv=", ""); //get rid of the code

 btnPot.Text = txtstring;

 }

 if (txtstring.Contains("RED")) { btn_Color.BackColor = Color.Red; }

 if (txtstring.Contains("YEL"))

 {

 btn_Color.BackColor = Color.Yellow;

 }

 }

 private void btnSendText_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write(txtDataTx.Text + "\r" + "\n");

//must send at least LF to remote so its know end of message

 }

 else {MessageBox.Show (" port not open");}

 }

 private void btnGrnLed_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write("grnled" + "\r" + "\n");

//must send at least LF to remote so its know end of message

 }

 else { MessageBox.Show(" port not open"); }

 }

 private void btnRedLed_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write("redled" + "\r" + "\n");

//must send at least LF to remote so its know end of message

569

 }

 else { MessageBox.Show(" port not open"); }

 }

 private void btnYelOff_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write("yelledoff" + "\r" + "\n");

//must send at least LF to remote so its know end of message

 }

 else { MessageBox.Show(" port not open"); }

 }

 private void btnYelOn_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write("yelledon" + "\r" + "\n");

//must send at least LF to remote so its know end of message

 }

 else { MessageBox.Show(" port not open"); }

 }

 private void btnSendTime_Click(object sender, EventArgs e)

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Write(DateTime.Now.ToString("hh.mm.ss dd/MM/yyyy") + "\n");

 }

 else { MessageBox.Show(" port not open"); }

 }

 }

}

570

40.19 Using excel to capture serial data

 It is straightforward to use excel to look at data sent from the microcontroller. First download PLX-DAQ
from the net and follow the setup instructions.

Next write a program that sends the right commands out the comm. Port to PLX-DAQ.
$crystal = 8000000

$regfile = "m8535.dat"

Open "comA.5:9600,8,n,1" For Output As #1

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 =

Portc.5 , E = Portc.1 , Rs = Portc.0

Config Lcd = 20 * 4

' Declare Variables

Dim D As Single

Dim R As Single

Dim Sin_x As Single

Dim H As Byte

'--

' Program starts here

Wait 1

'put some labels in row 1 of the speadsheet

Print #1 , "LABEL, Degrees, Radians, Sin"

'send a message to the program message area

Print #1 , "MSG, Starting data plotting "

'put a label in a specific cell on the spreadsheet (can only be in column A

thru F)

Print #1 , "CELL,SET, E2, data1_in"

Do

 Print #1 , "CLEARDATA"

 For D = 0 To 359

 'calculate the values to send

 R = Deg2rad(D)

 Sin_x = Sin(D)

 'send values that will appear in sequential columns in the spreadsheet

 Print #1 , "DATA," ; D ; "," ; R ; "," ; Sin_x

 'send data to a specific cell (can only be in columns A thru F)

 Print #1 , "CELL,SET," ; "F2," ; Sin_x

 'display the values on the lcd

 Locate 1 , 1

 Lcd D

 Locate 1 , 8

 Lcd R

 Locate 2 , 1

 Lcd Sin_x

 Waitms 10

 Next

Loop

End 'end program

571

Open "comA.5:9600,8,n,1" For Output As #1

This line sets up Bascom to know that you are going to send data out Porta.5, it will be at 9600 baud, 8
data bits, no paraity and 1 stop bit. It will be called #1 in the program.

Print #1 , "LABEL, Degrees, Radians, Sine"

This line sends the LABEL command out on #1 (portA.5). note that LABEL must be in capitals.
The words following LABEL will appear in excel cells, A1, A2, A3.... in that order.

Print #1 , "MSG, Starting data plotting "

send a message to be displayed in PLQ-DAX

Print #1 , "CELL,SET, E2, data1_in"

Write a label in a specific cell in excel. Note this can only be in columns A,B,C,D, or F.

Print #1 , "CLEARDATA"

Clear all data from the cells we are controlling in spreadsheet (other cells contents will not be deleted)

Print #1 , "DATA," ; W ; "," ; X ; "," ; Sin_x

Now send some data. Because there are three pieces of data they will automatically go into columns A,
B & C. The first time PLX-DAQ receives this command it will put the data into A2, B2, C2. The next time
it will put it into A3, B3, C3 and so on. This will create a data table.
Note that PLX-DAQ requires a comma between each piece of data.

In the code the data is sent 360 times (using the For W = 0 To 359)

This is the number of degrees in a circle.

The actual data are the sin values for each degree from 0 to 359, so we will get PLX-DAQ to plot the
data on a graph. Note that Bascom works in radians to do sin,cos,tan not degrees so we convert it to
radians with R = Deg2rad(D)

Print #1 , "CELL,SET," ; "F2," ; Sin_x

If we want just a single piece of data then we can put it into a specific cell on the table.
This can be plotted by a line/bar/dot graph that will follow the changing value.

572

40.20 PLX-DAQ

Download and install PLX-DQA and run it.
Excel may complain about macros and ActiveX controls, you must allow these or it will not work.

To connect to the incoming data from your microcontroller you must setup the comm port and the baud
rate. You can try faster baud rates but 9600 is reliable in most instances for the AVR at 8MHZ.

The R will flash with incoming data so that you know it is all running
ok.

The data coming intot excel is plotted according to the commands
sent my the microcontroller.

Note that PLX-DAQ will ony respond to data in the first sheet in a
multisheet spreadsheet!

Several different types of graphs have been created to plot the values. The line graph plots the values in
Column C and the other 4 graphs look only at the data in F2.

573

40.21 StampPlot

Another very useful (and exceedingly more comprehensive) data plotting program is StampPlot.
Initially lets start with a simple program to send data and plot it over time.

Do

 For D = 0 To 359

 'calculate the values to send

 R = Deg2rad(d)

 Sin_x = Sin(r)

 Print #1 , Sin_x

 'display the values on the lcd

 Locate 1 , 1

 Lcd D

 Locate 1 , 8

 Lcd R

 Locate 2 , 1

 Lcd Sin_x

 Waitms 5

 Next

Loop

the data is simple to send, just use the line Print #1 , Sin_x

Start StampPlot and select Standard Plot.

574

In the next screen start the comms (comm. Port 1 and 9600) in the bottom left corner and change the
scale in the top left corner to -1,1

StampPlot is highly configurable with alarms and meters

575

.

40.22 Serial to parallel

We came across some bi-colour LEDs and wanted to add them to a circuit in a circular pattern.

When driven in one direction the LEDs glow red, when reversed they
glow green. They could be driven directly from a microcontroller, but
would require two I/O pins each as in this diagram

This schematic shows the LS164 serial to parallel ICs used to implement control 16 LEDs and the 8 I/O
connections required to drive them . The ICs require a data line and a clock line (so it is synchronous
communication)

576

577

PCB track layout

578

Program to show off the bi color LEDs and serial to parallel conversion
'--
' Title Block
' Author:
' Date:
' Version: 1.0
' File Name: bicolourled_Ver1.bas
'--
' Program Description:
' This program flashes a bicolour continuously A.6 A.7
' Hardware features
' leds on portd
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 ' internal clock
$regfile = "m64.dat" ' ATMEGA64-16AI
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output '
Config Portb = Output '
Config Portc = Output '
Config Portd = Output '
' 7. Hardware Aliases
Clk4 Alias Portc.7
Data4 Alias Portc.6
Clk3 Alias Portc.5
Data3 Alias Portc.4
Clk2 Alias Portc.3
Data2 Alias Portc.2
Clk1 Alias Portc.1
Data1 Alias Portc.0
' 8. initialise ports so hardware starts correctly

'--
' 9. Declare Constants
Const Timedelay = 500 ' the timing for the flash
Const Pulse = 10000
'--
' 10. Declare Variables
Dim I As Byte
Dim J As Byte
Dim Dat As Byte
I = 255
J = 255
'all leds off
Shiftout Data1 , Clk1 , I , 3 , 8 , 32000 'shiftout 8 bits
Shiftout Data2 , Clk2 , J , 3 , 8 , 32000 'shiftout 8 bits
Shiftout Data3 , Clk3 , I , 3 , 8 , 32000 'shiftout 8 bits
Shiftout Data4 , Clk4 , J , 3 , 8 , 32000 'shiftout 8 bits
Wait 3
Dat = &B00000001

'Initialise Variables

579

'--
'Program starts here
Do
 Rotate Dat , Left
 I = Dat '0=Rd
 J = 0 '0=gn
 Shiftout Data1 , Clk1 , I , 3 ', 8 , 1 'shiftout 8 bits
 Shiftout Data2 , Clk2 , J , 3 ', 8 , 1 'shiftout 8 bits
 Set Porta.0
 Waitms Timedelay
 I = 0 '0=Rd
 J = Dat '0=gn
 Shiftout Data1 , Clk1 , I , 3 ', 8 , 1 'shiftout 8 bits
 Shiftout Data2 , Clk2 , J , 3 ', 8 , 1 'shiftout 8 bits
 Reset Porta.0
 Waitms Timedelay
Loop

End 'end program

580

40.23 Keyboard interfacing – synchronous serial data

The computer PS/2 keyboard is an example of synchronous serial communication and can be
connected directly to an AVR microcontroller (synchronous means that a clock signal is sent as well as
the data signal to help the receiver know the timing for the data).

On the left is the PS/2 (or 6-pin mini DIN) plug on a cable, it is known as the male connector. The
socket on the right is as seen on a computer motherboard and is called the female connector. Note the
wiring on the socket is the mirror image of the plug, and that it is the socket we will be wiring to a
microcontroller.

581

The data from the keyboard has been captured using a Saleae Logic Analyser. These are the 2 lines, data and clock, from the keyboard; and the
horizontal scale is 0.1 seconds per division. Here is the result of pressing 3 keys one after the other, there are 3 sets of data

Zooming in on one set of data it can be seen that it is actually 3 individual chunks of data

And zooming in further still we can see that a single chunk of data is a series of 1’s and 0’s

The clock is a regular alternating signal of eleven 1’s and 0’s, and indicates to us when the data is valid (can be read). The data must be read
along wth the clock so there are eleven bits of data even though it appears tere are fewer.

582

The data sequence is reguar it always consists of a start bit, followed by 8 data bits, then a parity error checking bit and finally a stop bit)
The data is sent LSB (least significant bit) first so when it is used by your micro it is binary 00010101 (which in hex is15H)
The specification for data from a keyboard can be found on the internet and states that the data bit must be valid at least 5uS before the clock
goes negative. So we can read the data any time after the clock goes low.

The logic analyser has the ability to interpret the data for us , its just a matter of working out its speed (bits per second) which is around 12,000 bits
per second for the keyboard which we tested.

Once these settings are made the logic analyser software will show the hex code for the data.

583

Each key of the key board has a unique scan code (some have a sequence) e.g. Ctrl is E0(hex) then 14(hex)
The key that corresponds to the scan code of 15(hex) is the letter ‘Q’

Party
Along with the data a single parity bit is sent; the parity bit is set (to 1) if there is an even number of 1's in the data bits or reset (to 0) if there is an
odd number of 1's in the data bits. In our case the data has 3 bits set to 1 so a 0 is sent. The purpose of parity is to help the receiver know if the
message was received correctly. At the receiving end the number of 1’s is added up and compared to the parity bit, if there is a match it was
assumed that the data was received correctly. However if a single bit of data was corrupted then the receiver could identify a problem (wouldn’t
this be useful when people are talking to each other!!)

The use of parity along with the use of a synchronous clock makes this communication protocol reasonable robust to interference.
Do note though that it is not completely immune to corruption as if 2 bits of thedata were corrupted then the parity bit might still be correct.

Lots more information about the data being sent (protocol) can be found at http://www.computer-engineering.org/ps2protocol/

584

There are a number of choices we have when we want to receive data fro the keyboard.
The first is to use the built in function in Bascom GETATKBD(). Along with this function we need to do a
conversion process. Microcontrollers don’t use scan codes for letters(and digits) they use the ascii code
so the received scan code is translated to ascii code using a lookup table.

'--

'Title Block

' Author: B.Collis

' Date: July 2010

' File Name: ps2kbV1.bas

'--

' Program Description:

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control lines

' keypad connected as per R4R circuit on 1 ADC line

' lm35 on adc

' AREF PIN32 disconnected - uses internal 2.56V reference

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m32def.dat" 'the micro we are using

'--

'Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 20 * 4 'configure lcd screen

Config Keyboard = Pind.6 , Data = Pind.7 , Keydata = Keydata

Config Portd = Input

'---

'Declare Constants

'--

'Declare Variables

Dim Kb_textstring As String * 20

Dim Kb_character As String * 1

Dim Kb_bytevalue As Byte

Dim Length As Byte

'Initialise Variables

'--

 keyboard>0? Y
N

poll/check for keyboard data

N keyboard>0?
Y

wait for keyboard data

do something
depending upon the value

do something
depending upon the value

585

'Program starts here

Cursor Off

Cls

Locate 1 , 1

Lcd "keyboard reader"

'here are 2 examples of what you can do with the keyboard

'--

Do

 'read the keyboard

 Kb_bytevalue = Getatkbd()

 'if a recognised key is pressed then do something

 If Kb_bytevalue > 0 Then

 Locate 2 , 1

 Lcd "byte value=" ; Kb_bytevalue ; " "

 Kb_character = Chr(kb_bytevalue)

 Locate 3 , 1

 Lcd "ascii char=" ; Kb_character ; " "

 End If

Loop

'--

Do

 'wait until a recognised key is pressed

 Do

 Kb_bytevalue = Getatkbd()

 Loop Until Kb_bytevalue <> 0

 Locate 2 , 1

 Lcd "byte value=" ; Kb_bytevalue ; " "

 Kb_character = Chr(kb_bytevalue)

 Locate 3 , 1

 Lcd "ascii char=" ; Kb_character ; " "

Loop

End

'convert the data from the keyboard to an ascii character

'only ascii characters are here if you want other data to be recognised

' then change the table specific key below from a 0 to another number

Keydata:

'normal keys lower case

Data 0 , 0 , 0 , 0 , 0 , 200 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0

Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 , 50 ,

0

Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 , 114

, 53 , 0

Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117 , 55

, 56 , 0

Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 , 112 ,

43 , 0

Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0

Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0

Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 ,

0

586

'shifted keys UPPER case

Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Data 0 , 0 , 0 , 0 , 0 , 81 , 33 , 0 , 0 , 0 , 90 , 83 , 65 , 87 , 34 , 0

Data 0 , 67 , 88 , 68 , 69 , 0 , 35 , 0 , 0 , 32 , 86 , 70 , 84 , 82 , 37 ,

0

Data 0 , 78 , 66 , 72 , 71 , 89 , 38 , 0 , 0 , 76 , 77 , 74 , 85 , 47 , 40 ,

0

Data 0 , 59 , 75 , 73 , 79 , 61 , 41 , 0 , 0 , 58 , 95 , 76 , 48 , 80 , 63 ,

0

Data 0 , 0 , 0 , 0 , 0 , 96 , 0 , 0 , 0 , 0 , 13 , 94 , 0 , 42 , 0 , 0

Data 0 , 62 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0 , 0

Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45

Now there is a slight problem with the Bascom Getatkbd() function and that is that once you enter it
there is no easy way out of it unless a key is pressed.

It is possible to get out of the routine by starting a timer before caling getatkbd(),and when the timer
timesout set the ERR flag; once that is set the getatkbd() routine will exit.

Do

 'read the keyboard

 Start timer

Kb_bytevalue = Getatkbd()

Stop timer

 'if a recognised key is pressed then do something

 If Kb_bytevalue > 0 Then

 Locate 2 , 1

 Lcd "byte value=" ; Kb_bytevalue ; " "

 Kb_character = Chr(kb_bytevalue)

 Locate 3 , 1

 Lcd "ascii char=" ; Kb_character ; " "

 End If

Loop

Timer_isr:

 Err=1

 Stop timer

return

Altough this is a for using a keyboard it is not really an elegant solution to crash out of a loop by creating
an error. We an write our own software.

Before we can go on though we need to know about the scan codes sequence. The keyboard sends (at
least) three characters everytime a key is pressed.
For an ‘a’ the codes 1C F0 1C will be sent,
For an ‘s’ the codes 1B F0 1B will be sent.
If we are to write our own handler for keycoodes then we must ignore F0 and the repeated scan code.

587

40.24 Keyboard as asynchronous data

For a one-off project a simple method of dealing with a keyboard is to treat it as an asynchronous serial
data connection and to ignore the clock line.

The logic analyser was used to monitor the two input signals, clock and data, however it was also used
to analyse the data signal and it did this independently of the clock signal (or asynchronously). It can do
this because the data bits are all the same width.

Using the ‘soft’ UART features in Bascom we can open a channel for receiving serial data on any pin.
'--

'Title Block

' Author: B.Collis

' Date: July 2010

' File Name: ps2kb-serialtrial-V1.bas

'--

' Program Description:

' Hardware Features:

' LCD on portc - note the use of 4 bit mode and only 2 control lines

' AREF PIN32 disconnected - uses internal 2.56V reference

' make kb clock

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m32def.dat" 'the micro we are using

'--

'Hardware Setups

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 20 * 4 'configure lcd screen

Open "comd.3:12000,8,o,1" For Input As #1

'aliases

Kd_data Alias Pind.7

Kb_clock Alias Pind.6

Kb_control Alias Portd.6

'Config Kb_data = Input

Config Kb_clock = Input

'---

'Declare Constants

'---

'Declare Variables

Dim Kb_textstring As String * 20

Dim Kb_character As Byte

Dim Kb_bytevalue As Byte

588

Dim Kb_bytevalue_old As Byte

Dim Repeat As Bit

'Initialise Variables

'--

'Program starts here

Cursor Off

Cls

Locate 1 , 1

Lcd " async keyboard reader "

'--

Cls

Lcd "serial kb in"

Do

 'look for input

 'the data is not sent as a single keycode for each character pressed

there are 3 data bursts

 'e.g.‘a’ sends 1C F0 1C ,so we ignore F0 and respond to only the first 1C

 Kb_bytevalue = Inkey(#1)

 If Kb_bytevalue > 0 And Kb_bytevalue <> &HF0 Then 'ignore F0

 If Kb_bytevalue <> Kb_bytevalue_old Then 'only respond once

 'remember char for next time thru loop

 Kb_bytevalue_old = Kb_bytevalue

 'get the ascii value for the scan code value

 Kb_character = Lookup(kb_bytevalue , Keydata)

 'build a string of characters

 Kb_textstring = Kb_textstring + Chr(kb_character)

 'display some stuff on the LCD for test purposes

 Locate 2 , 1

 Lcd Hex(kb_bytevalue) ; " " ; Kb_bytevalue

 Locate 3 , 1

 Lcd Chr(kb_character)

 Locate 4 , 1

 Lcd " "

 Locate 4 , 1

 Lcd Kb_textstring

 Else

 Kb_bytevalue_old = 0 'we repeat key presses

 End If

 If Kb_bytevalue = &H5A Then 'we got a return key

 'do something with it?

 End If

 End If

Loop

'

End

'convert the data from the keyboard to an ascii character

'only ascii characters are here if you want other data to be recognised

' then change the table specific key below from a 0 to another number

Keydata:

'normal keys lower case

589

Data 0 , 0 , 0 , 0 , 0 , 200 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0

' q 1 z s a w 2

Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 , 50 , 0

Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 , 114 , 53 , 0

Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117 , 55 , 56 , 0

Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 , 112 , 43 , 0

Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0

Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0

Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 , 0

590

41 Radio Data Communication

41.1 An Introduction to data over radio

Radio (electromagnetic) waves are used to transfer information from one place to another through the
atmosphere (that’s without wires) . A radio wave consists of two signals, a carrier wave and the
information to be sent called the modulating wave this wave could be audio or digital data.

These two are combined together to produce the radio signal. There are many different ways that the
carrier can be modulated. With audio signals this can be AM (amplitude modulation), FM (frequency
modulation), PM phase modulation.

In FM the carrier signal is
modulated by an audio signal.

If the carrier is 89.8MHz (Life FM)
and an audio tone is applied then
the signal transmitted will vary in
frequency depending upon the
frequency and amplitude of the
audio wave.

591

In Amplitude modulation the frequency of the carrier wave is fixed however its amplitude changes in
time with the modulating signa,. e.g National Radio 756Khz.

AM picks up interference from other electrical and electronic devices and is noiser than FM.

592

41.1.1 Pulse modulation

Data is often sent using some form of pulse modulation, pulses represent either a 1 or 0.

When sending data over any communication link it is important to realise that the system is
asynchronous (no clock) so the receiver relies solely on the incoming signal to rebuild the data. If we
want to send data then we need to send something for a ‘1’ and we need to send something for a ‘0’ We
canot rely on the absence of data to be a ‘0’ as in this diagram below.

A receiver just cannot reliably determine a zero; as how can it determine that an absence of signal is a
zero or due to a lost or broken transmission? Also how long is a 1, if 111 is sent will the system get a 1,
a 11 or 111?

Digital modulation systems range from very simple to highly highly complex.
OOK is ‘on off keying’ (keying is the term originally used to describe controlling a radio carrier wave with
a Morse key),

Using OOK the signal is turned on and off in patterns to send 1’s and 0’s. This is asynchronous, which
means that the receiver has to figure out from the transmitted signal what is a 1 and what is a 0. The
sequence is very easy to receive though as the overall length of a 1 and 0 is the same, the difference is
the length of time the transmitted signal is present.

593

434MHz is a frequency that can be used in many countries for free (unlicensed) radio transmission and
is commonly used in systems such as remote controlled garage doors.

There are a large range of transmitters, receivers and tranceivers (a device which both transmits and
receives) available in 434Mhz.

There are also simple encoder and decoder ICs to help with the modualation of the signals. Here is a
block diagram of a student (PB) radio system that was designed to send messages from loation to
another.

Encoder

Transmitter

Decoder

Receiver

594

The transmitter has a built in antenna, the receiver has a wire soldered to it as an antenna (green wire
currently cable tied in the picture). This needs to be 16.4cm long, if you were making your own PCB you
make it a track, or you could also wind 24 turns of 0.5mm wire around something 3.2mm in diameter.

595

In this partial schematic the HT12Encode receives 4 bits of data from the microcontroller and sends it
along with the 8 address bits serially to the transmitter. The speed of the data is set by the value of the
resistor. Also any convenient pins can be used on the microcontroller.

596

The receiving system is very similar to the transmitting system, the receiver board has more power pins
to connect and two output pins, audio out and data out. The audio out pin is not used. It is essential that
the address on the HT12D is the same as that on the HT12E, otherwise the data will be ignored.

597

41.2 HT12E Datasheet, transmission and timing

It is quite important to gain experience reading manufacturers datasheets, it is worth reading this with
the datasheet for the HT12 open as well. One confusing thing about datasheets is that they sometimes
cover a number of different parts in one sheet. This datsheet covers the HT12A and HT12E, the HT12A
is used for infrared remote controls the HT12E for RF (radio) . Datasheets also have various pinouts for
the ICs such as DIP (dual inline package) and SOP (small outline package) in this case. Make sure you
order the right one!

In the datsheet you will find timing diagrams, they occur a great deal in electronics; this diagram has
been taken from the HT12E datasheet and modified a little to help explain its detail.

In this diagram two time-voltage graphs are drawn one above the other, the reason for this is that they
line up in time. When TE (transmit enable) goes low Dout (data out) goes high and sends the data 4
times. The line or bar above the TE in the daatsheet means that it is an active low signal, i.e. the line
should usually be high and when it goes low the IC will do something.

The second diagram is the same, however in this case it shows that if TE is held low then the HT-12E
continues repeats sending the word until it goes high again(however it will always send at least 4 words)

These diagrams represent the flow of the process from the micro to the HT-12E and the HT-12E to the
transmitter. We are not looking at what comes out of the transmitter.

598

 The datasheet gets a little confusing and isn’t clear about he data word structure for the two devices so
an oscilloscope was use to capture the transmission sequence on Dout from the HT-12E. The time in
millisecs is shown on the X axis, it can be seen that the whole sequence of 4 data words took almost
60mS to send. (Why does it send the data word 4 times?)

Here is one data word, a data ‘word’ is 13 bits of data from the oscilloscope.
A single start bit, then the 8 address bits (10110011) then the 4 data bits (0001).

Each full bit includes a period of low and a period of high time and lasts for 687.5uSecs (the difference
in time between the o and the x on the scope display)

Other measurements were taken and a single pulse was measured as 229 uSecs in duration and a
double pulse was measured as 458 uSecs, with the whole word taking about 8.5mSecs to transmit.

These rates are all determined by the value of R connected to the HT-12E, which in our case is 750K.

599

This graph from the datasheet shows how the frequency of the oscillator relates to the supply voltage
and resistor value. The 750k resistor at 5V will make the oscillator run at about 3.9Khz.
A 3.9Khz wave form has a period of 0.256mSecs (256uSecs).

The measured value was 228uSecs which is a 4.4kHz It doesn’t quite match, its about 10% off. This
could be due to variation in temperature, voltage, resistance or even inside the IC.

600

41.3 HT12 test setup

The above 2 boards have been setup in the classroom to test the system. The transmitter is on the left,
the schematics for these are:

601

602

41.4 HT12E Program

Writing a program to send data usingthe HT12E is straight forward because the IC hides all the
complexity from us and we don’t have to worry about what it is actually doing. Here is a program that
sends the numbers 0 to15 continuously to the transmitter, at 2 second intervals.

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 ' internal clock

$regfile = "m16def.dat"

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

' Hardware Aliases

Ht12e_te Alias Portd.2

Te_led Alias Portc.0

' initialise ports so hardware starts correctly Porta = &H00

Portc = &HFF ' Turn Off Led's on Portc.0 and PORTC.0.1

Portd = &HFF ' Ensure encoder is not transmitting

'--

' Declare Variables

Dim I As Byte

' Initialise Variables

'--

' Program starts here

' Transmit the values 0 to 15 then repeat

Do

 For I = 0 To 15

 Portb = I ' Put the value into the encoder via PortB

 Gosub Transmit ' Allow the data to be transmitted

 Waitms 2000 'some Delay is for necessary testing.

 ' without effecting transmission reliabilty

 Next I

Loop

'--

' Subroutines

Transmit:

 Set Ht12e_te ' Enable transmission of 4bits from PortB

 Set Te_led ' Turn on Transmission indicator

 Waitms 5 ' Need a short delay for HT12E

 Reset Ht12e_te ' Stop the encoding and transmission of data

 Waitms 60 ' Need to see LED and wait till transmission completed

 Reset Te_led

Return

603

41.5 HT12D datasheet

The matching part for the HT12E is the HT12D. The HT12D decodes the data from the receiver, if it
receives the same message 3 times in a row it will put the 4 bits of data onto the 4 data pins and then
put the VT (valid transmission) pin high for a short period. Note that the encoder repeats the data 4
times, this allows for some error, this repeating or sending duplicate data is called redundancy.

The flowchart from the datasheet explains the process.

604

The graph from the datasheet shows that a 33k resistor at 5V will oscillate at 210kHz. The datasheet
states that the decoder oscillator must be about 50 times that of the encoder oscillator.

605

41.6 HT12D Program

Writing a program to receive data is not hard as the HT12D takes care of the difficult details and signals
us when valid data has arrived via the VT pin.
'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 ' internal clock

$regfile = "m16def.dat" ' ATMEGA16

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output '4 leds on PortA.0to A.3

Config Portb = Input ' Valid data is input on this port

Config Portc = Output ' Used for LED's and LCD

Config Portd = Input ' PortD.2 is used for Data Valid

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 16 * 2

' Hardware Aliases

Ht12d_dv Alias Pind.2

'--

' Declare Constants

Const True = 1

Const False = 0

' Declare Variables

Dim Rcvd_value As Byte

' Initialise Variables

'--

' Program starts here

Cls

Cursor Off

Locate 1 , 1

Lcd "HT12D test program"

Do

 If Ht12d_dv = True Then ' If signal present

 Gosub Get_data ' Wait until a valid value

 Porta = Not Rcvd_value 'display on leds - inverse

 Locate 2 , 1

 Lcd "Rcvd Value = "

 Lcd Rcvd_value ; " " ' display value

 End If

Loop '

End 'end program

'--

Get_data:

 Rcvd_value = Pinb And &H0F ' get value from lower nibble PortB

 While Ht12d_dv = True ' wait until data no longer valid

 Wend

Return

The difficult part of the previous program is integrating it into a larger program where more things are
happening, the trouble is that we often don’t want to check if something has happened (polling) we want
to be told when it has happened (interrupted).

In a larger program it would make sense then to use one of the AVR’s hardware interrupt, this is
covered further on after the topic ofinterrupts has been introduced.

606

41.7 Replacing the HT12E encoding with software

The HT12E is not that complex (the HT12D is), it can easily be replaced with a program as in this code
below. The program continuously sends the numbers 0 to 15 as data to a fixed address &B01101111.
The code is in the subroutine transmit:
It sends the start bit, then 8 bits if address then 4 bits of data.

607

The code is easily implemented using for-next loops , within the loop it checks each bit to see if it is a 1
or 0. To do this it uses the code If Addr.i = 1 Then ...

The loop goes from 7 down to 0, if the address is &B01101111 then as i changes the code addr.i
selects each bit of the address. This is similar to addressing port pins e.g. portd.7 or
portd.0
'---

' Compiler Directives (these tell Bascom things about our

hardware)

$crystal = 8000000 ' internal clock

$regfile = "m32def.dat"

'---

' Hardware Setups

' setup direction of all ports

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

' Hardware Aliases

Tx_data Alias Portd.2

Tx_led Alias Portc.0

' initialise ports so hardware starts correctly Porta = &H00

Set Tx_data

Set Tx_led

Set Portc.1

'--

' Declare Constants

Const Tx_del = 230 'micro seconds

' Declare Variables

Dim I As Byte 'temporary variable

Dim J As Byte 'temporary variable

Dim Addr As Byte

Dim Dat As Byte 'the 4 bits of data to send

' Initialise Variables

Addr = &B01101111 'the address for this system

'--

' Program starts here

' the main program is just a test routine to test the subroutine

' that does the actual work

' Continuously transmit the values 0 to 15

For I = 1 To 4 ' toggle the LED on and off a few

times

 Toggle Tx_led ' to show the PCB is working

Waitms 500

Next

Do

 For Dat = 0 To 15 ' test code

 Gosub Transmit ' Allow the data to be transmitted

 Waitms 2000 ' Delay is for visual testing.

 Next I

Loop

'--

' Subroutines

Transmit:

i Addr.i

7 0

6 1

5 1

4 0

3 1

2 1

1 1

0 1

608

 Reset Tx_led 'light tx LED

 For J = 1 To 6 'send full word 6 times

 'send the start bit first

 Set Tx_data 'carrier on

 Waitus Tx_del 'start bit time

 Reset Tx_data 'carrier off

 'send the address

 For I = 7 To 0 Step -1 'send most significant bit(7) first

 Waitus Tx_del 'start with 1 period of no carrier

 If Addr.i = 1 Then

 Waitus Tx_del 'extra low time for 1

 Set Tx_data 'carrier on

 Waitus Tx_del

 Reset Tx_data 'carrier off

 Else

 Set Tx_data 'carrier on

 Waitus Tx_del 'extra carrier on time for 1

 Waitus Tx_del

 Reset Tx_data 'carrier off

 End If

 Next

 'send the data

 For I = 3 To 0 Step -1 'send most significant bit(3) first

 Waitus Tx_del 'start with 1 period of no carrier

 If Dat.i = 1 Then

 Waitus Tx_del 'extra low time for 1

 Set Tx_data 'carrier on

 Waitus Tx_del

 Reset Tx_data 'off

 Else

 Set Tx_data 'on

 Waitus Tx_del 'extra carrier on time for 0

 Waitus Tx_del

 Reset Tx_data 'off

 End If

 Reset Tx_led

 Next

 Waitus 9000 'pause between words

 Next

 Set Tx_led 'TX LED off

Return

Here are two screen shots from the oscilloscope the timing in each is almost identical apart from the
delay between datawords. This time period could be reduced from 9000uS to 8000uS to match the
HT12E.

It should be noted that although the HT12E sends the data word 4 times, we found it necessary to send
the data word at least 6 times to get a reliable transmission.

609

610

42 Introduction to I2C
The Inter-IC bus (I2C pronounced "eye-squared-see") was developed by Philips to communicate
between devices in their TV sets. It is now popular and is often used when short distance
communications is needed. It is normally used within equipment to communicate between pcb's, e.g.
main boards and display boards rather than externally to other equipment.

It is a half duplex synchronous protocol, which means that only one end of the link can talk at once (half
duplex) and that there are separate data and clock lines (synchronous). The real strength of this
protocol is that many devices can share the bus which reduces the number of I/O lines needed on
microcontrollers,it increases the number of devices 1 micro can interface to and several manufacturers
now make I2C devices.

The two lines are SDA - Serial data and SCL - Serial Clock
Communication

The system of communications is not too difficult to follow, the first event is when the master issues a
start pulse causing all slaves to wake up and listen. the master then sends a 7 bit address which
corresponds to one of the slaves on the bus. Then one more bit is sent that tells the slave whether it is
going to be receiving or sending information. This is then followed by an ACK bit (acknowledge) issued
by the receiver, saying it got the message. Data is then sent over the bus by the transmitter.

The I2C protocol is not too hard to generate using software; Bascom comes with the software already
built in making I2C very easy to use.

611

42.1 I2C Real Time Clocks

These are fantastic devices that connect to the microcontroller and keep the time for you. Some
common devices are the DS1337, DS1678 and DS1307.

All three require an external 32.768KHz crystal connected to X1 and X2, 5Volts from your circuit
connected to Vcc, a ground connection (OV) and connection of two interface pins to the microcontroller,
SCL (serial clock) and SDA (serial data).

The DS1678 and DS1307 can have a 3V battery connected to them as backups to keep the RTC time
going even though the circuit is powered down. This will last for a couple of years and note that it is not
rechargeable. There are datasheets on www.maxim-ic.com website for each of these components as
well as many other interesting datasheets on topics such as battery backup. Each of these devices has
other unique features that can be explored once the basic time functions are operational.

In these RTCs the registers are split into BCD digits. What this means is that instead of storing seconds
as one variable it splits the variable into two parts the units value and the tens value.
 register 0 Tens of seconds Units of seconds
 register 1 Tens of minutes Units of minutes
 register 2 Tens of hours Units of hours
 register 3 Tens of hours Units of hours
 register .. Tens of ... Units of ...

When we want to put the variable onto an LCD we cannot write lcd seconds as the number would not
be correct. We must first convert the BCD to true binary using
Seconds = Makedec(seconds).
LCD Seconds

The oppositeneeds to happen when writing to the time registers, we must convert the binary to bcd.

Temp = Makebcd(seconds)
I2cwbyte Temp

612

42.2 Real time clocks

These devices are very common in microcontroller products such as microwave ovens,
cellular phones, wrist watches, industrial process controllers etc.

42.3 Connecting the RTC

The crystal for the RTC is a 32.768khz crystal. The reason for the strange number is that
32768 is a multiple of 2, so all that is needed to obtain 1 second pulses is to divide the
frequency by two 15 times to get exactly 1 second pulses.

32768
/2 = 16384, /2 = 8192, /2 = 4096, /2 = 2048….2 = 8, /2 = 4, /2 = 2, /2 = 1

42.4 Connecting the RTC to the board

Take special note about bending the leads and soldering to
avoid damage to the crystal. Also fix the crystal to the board
somehow to reduce strain on the leads.

The I2C lines SDA and SCL require pull up resistors of 4k7
each to 5V.

The battery is a 3V lithium cell, connect it between 0V and
the battery pin of the RTC. If a battery is not used then the
battery backup pin probably needs connecting to 0V, but
check the datasheet first.

613

42.5 Internal features

First open the datasheet for the DS1307 RTC

There is a memory within the RTC, firstly all the time and dates are stored individually. The
units and the 10s of each number are stored separately.

Here is the layout of the memory within the RTC

ADDRESS Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

00 0 10 Seconds Seconds

01 0 10 Minutes Minutes

02 0 12/24
AM/PM

10Hr Hour
10Hr

03 0 0 0 0 Day of week

04 0 0 10 Date Date

05 0 0 0
10
Mo

Month

06 10 Year Year

07 CONTROL

08

3F

RAM

The date and time Sunday, 24 September 2007 21:48:00 are stored as this

ADDRESS Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

00 0 0 Seconds

01 4 8 Minutes

(02 2 1 Hours

03 0 7 (Sunday)

04 2 4 Day

05 0 9 month

06 0 7 Year

When we read the RTC we send a message to it, (SEND DATA FROM ADDRESS 0)
 and it sends 0,48,21,07,24,08,7,..
until we tell it to stop sending

614

42.6 DS1307 RTC code

Here is the process for setting up communication with a DS1307 RTC followed by the code for one
connected to an 8535.

Step1: configure the hardware and dimension a variable, temp, to hold the data we want to send
to/receive from the 1678. Dimension the variables used to hold the year, month, day, hours, etc. Don't
forget to configure all the compiler directives and hardware such as the LCD, thermistor, switches etc.

Step2: setup the control register in the RTC, to specify the unique functions we require the 1307 to carry
out. This is only ever sent once to the 1307.

Step 3: write a number of subroutines that handle the actual communication with the control and status
registers inside the 1307. These routines make use of the Bascom functions for I2C communication.

Step 4: write a subroutine that gets the time, hours, date, etc from the 1307.

step 5 : write a subroutine that sets the time, hours, date, etc from the 1307.

step 6: write a program that incorporates these features and puts the time on an LCD.
'--

' Title Block

' Author: B.Collis

' Date: 26 Mar 2005

' File Name: 1307_Ver4.bas

'--

' Program Description:

' use an LCD to display the time

' has subroutines to start clock,write time/date to the rtc,

' read date/time from the rtc, setup the SQW pin at 1Hz

'added subroutines to read and write to ram locations

' LCD on portc - note the use of 4 bit mode and only 2 control lines

' DS1307 SDA=porta.2 SDC=porta.3

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m32def.dat" 'the micro we are using

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Portb = Output '

Config Portc = Output '

Config Portd = Output '

' config 2 wire I2C interface

'Config I2cdelay = 5 ' default slow mode

Config Sda = Porta.2

Config Scl = Porta.3

'Config lcd

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 16 * 2 'configure lcd screen

615

'Hardware Aliases

'Initialise ports so harware starts correctly

Cls 'clears LCD display

Cursor Off 'no cursor

'--

' Declare Constants

'--

' Declare Variables

Dim Temp As Byte

Dim Year As Byte

Dim Month As Byte

Dim Day As Byte

Dim Weekday As Byte

Dim Hours As Byte

Dim Minutes As Byte

Dim Seconds As Byte

Dim Ramlocation As Byte

Dim Ramvalue As Byte

' Initialise Variables

Year = 5

Month = 3

Weekday = 6

Day = 26

Hours = 6

Minutes = 01

Seconds = 0

'--

' Program starts here

Waitms 300

Cls

'these 3 subroutines should be called once and then commented out

'Gosub Start1307clk

'Gosub Write1307ctrl

'Gosub Write1307time

'Gosub Clear1307ram 'need to use once as initial powerup is

undefined

'Gosub Writeram

'Gosub Readram

'Ramvalue = &HAA

'Call Write1307ram(ramlocation , Ramvalue)

616

Do

 Gosub Read1307time 'read the rtc

 Locate 1 , 1

 Lcd Hours

 Lcd ":"

 Lcd Minutes

 Lcd ":"

 Lcd Seconds

 Lcd " "

 Lowerline

 Lcd Weekday

 Lcd ":"

 Lcd Day

 Lcd ":"

 Lcd Month

 Lcd ":"

 Lcd Year

 Lcd " "

 Waitms 200

Loop

End 'end program

'--

' Subroutines

Read1307time: 'RTC Real Time Clock

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte 0 'address to start sending from

 I2cstop

 Waitms 50

 I2cstart

 I2cwbyte &B11010001 'device code (reading)

 I2crbyte Seconds , Ack

 I2crbyte Minutes , Ack

 I2crbyte Hours , Ack

 I2crbyte Weekday , Ack

 I2crbyte Day , Ack

 I2crbyte Month , Ack

 I2crbyte Year , Nack

 Seconds = Makedec(seconds)

 Minutes = Makedec(minutes)

 Hours = Makedec(hours)

 Weekday = Makedec(weekday)

 Day = Makedec(day)

 Month = Makedec(month)

 Year = Makedec(year)

 I2cstop

Return

617

'write the time and date to the RTC

Write1307time:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte &H00 'send address of first byte to

access

 Temp = Makebcd(seconds) 'seconds

 I2cwbyte Temp

 Temp = Makebcd(minutes) 'minutes

 I2cwbyte Temp

 Temp = Makebcd(hours) 'hours

 I2cwbyte Temp

 Temp = Makebcd(weekday) 'day of week

 I2cwbyte Temp

 Temp = Makebcd(day) 'day

 I2cwbyte Temp

 Temp = Makebcd(month) 'month

 I2cwbyte Temp

 Temp = Makebcd(year) 'year

 I2cwbyte Temp

 I2cstop

Return

Write1307ctrl:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte &H07 'send address of first byte to

access

 I2cwbyte &B10010000 'start squarewav output 1Hz

 I2cstop

Return

Start1307clk:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte 0 'send address of first byte to

access

 I2cwbyte 0 'enable clock-also sets seconds to 0

 I2cstop

Return

Write1307ram:

'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of byte to access

 I2cwbyte Ramvalue 'send value to store

 I2cstop

Return

618

'routine to read the contents of one ram location

'setup ramlocation first and the data will be in ramvalue afterwards

'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)

Read1307ram:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of first byte to

access

 I2cstop

 Waitms 50

 I2cstart

 I2cwbyte &B11010001 'device code (reading)

 I2crbyte Ramvalue , Nack

 I2cstop

Return

Clear1307ram:

 Ramvalue = 00

 Ramlocation = &H08

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of byte to access

 For Ramlocation = &H08 To &H3F

 I2cwbyte Ramvalue 'send value to store

 Next

 I2cstop

Return

Writeram:

 Ramlocation = &H08

 Ramvalue = 111

 Gosub Write1307ram

 Ramlocation = &H09

 Ramvalue = 222

 Gosub Write1307ram

Return

Readram:

 Cls

 Ramlocation = &H08

 Gosub Read1307ram

 Lcd Ramvalue

 Lcd ":"

 Ramlocation = &H09

 Gosub Read1307ram

 Lcd Ramvalue

 Ramlocation = &H0A

 Gosub Read1307ram

 Lcd ":"

 Lcd Ramvalue

 Wait 5

Return

'--

' Interrupts

619

42.7 DS1678 RTC code

'--
' 1. Title Block
' Author: B.Collis
' Date: 10 mar 03
' Version: 1
' File Name: 1678_Ver1.bas
'--
' 2. Program Description:
' read the time from the RTC
' display it on the LCD
' 3. Hardware Features:
' Dallas DS1678 connected with 32.768khz crystal and battery backup
' SDA on A.2 SCL on A.3
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 5 switches on portB.0, B.1, D.2, D.3, D.6
' 4. Program Features:
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 7372800 'the crystal we are using
$regfile = "m8535.dat" 'the micro we are using
$noramclear 'so the compiler saves on memory
$lib "mcsbyteint.lbx"
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Pinb.0 = Input
Config Pinb.1 = Input
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Pind.2 = Input
Config Pind.3 = Input
Config Pind.6 = Input
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.2 , Rs =
Portc.0
Config Lcd = 40 * 2 'configure lcd screen
Config Sda = Porta.2
Config Scl = Porta.3
' 7. Hardware Aliases
Sw_1 Alias Pinb.0
Sw_2 Alias Pinb.1
Sw_3 Alias Pind.2
Sw_4 Alias Pind.3
Sw_5 Alias Pind.6
Spkr Alias Portd.7 'refer to spkr not PORTd.7
' 8. initialise ports so hardware starts correctly
Porta = &B11110000 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs
Reset Spkr

620

Cls
Cursor Off
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Temp As Byte
Dim Century As Byte
Dim Year As Byte
Dim Month As Byte
Dim Day As Byte
Dim _Dayofweek As Byte
Dim Hours As Byte
Dim Minutes As Byte
Dim Seconds As Byte
Dim Control As Byte 'the control byte for the DS1678
' 11. Initialise Variables
'--
' 12. Program starts here
Locate 1 , 1
Lcd "IT'S TIME"
Do
 'Debounce Sw_1 , 0 , Startrtc , Sub
 Gosub Displaytimedate
Loop
End 'end program
'--
' 13. Subroutines
Displaytimedate:
 Locate 2 , 1
 Gosub Read1678time 'read the rtc ds1678
 Select Case _Dayofweek
 Case 1 : Lcd "Mon"
 Case 2 : Lcd "Tue"
 Case 3 : Lcd "Wed"
 Case 4 : Lcd "Thu"
 Case 5 : Lcd "Fri"
 Case 6 : Lcd "Sat"
 Case 7 : Lcd "Sun"
 End Select
 Lcd " "
 Select Case Month
 Case 1 : Lcd "Jan"
 Case 2 : Lcd "Feb"
 Case 3 : Lcd "Mar"
 Case 4 : Lcd "Apr"
 Case 5 : Lcd "May"
 Case 6 : Lcd "Jun"
 Case 7 : Lcd "Jul"
 Case 8 : Lcd "Aug"
 Case 9 : Lcd "Sep"
 Case 10 : Lcd "Oct"
 Case 11 : Lcd "Nov"
 Case 12 : Lcd "Dec"

621

 End Select
 Lcd " "
 Lcd Day
 Lcd " "
 Lcd Century
 If Year < 10 Then Lcd "0"
 Lcd Year
 Lcd " "
 If Hours < 10 Then Lcd "0"
 Lcd Hours
 Lcd ":"
 If Minutes < 10 Then Lcd "0"
 Lcd Minutes
 Lcd ":"
 If Seconds < 10 Then Lcd "0"
 Lcd Seconds
 Lcd " "
Return

'read time and date from 1678
Read1678time: 'RTC Real Time Clock
 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H00 'send address of first byte to access
 I2cstop

 I2cstart
 I2cwbyte &B10010101 'send device code (reading data)
 I2crbyte Seconds , Ack
 I2crbyte Minutes , Ack
 I2crbyte Hours , Ack
 I2crbyte _Dayofweek , Ack
 I2crbyte Day , Ack
 I2crbyte Month , Ack
 I2crbyte Year , Ack
 I2crbyte Century , Nack
 I2cstop
 Seconds = Makedec(seconds)
 Minutes = Makedec(minutes)
 Hours = Makedec(hours)
 _Dayofweek = Makedec(_dayofweek)
 Day = Makedec(day)
 Month = Makedec(month)
 Year = Makedec(year)
 Century = Makedec(century)
Return

'--
'write the time and date to the DS1678 RTC
Write1678time: 'RTC Real Time Clock
 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H00 'send address of first byte to access
 Temp = Makebcd(seconds) 'seconds

622

 I2cwbyte Temp
 Temp = Makebcd(minutes) 'minutes
 I2cwbyte Temp
 Temp = Makebcd(hours) 'hours
 I2cwbyte Temp
 Temp = Makebcd(_dayofweek) 'day of week
 I2cwbyte Temp
 Temp = Makebcd(day) 'day
 I2cwbyte Temp
 Temp = Makebcd(month) 'month
 I2cwbyte Temp
 Temp = Makebcd(year) 'year
 I2cwbyte Temp
 Temp = Makebcd(century) 'century
 I2cwbyte Temp
 I2cstop
Return

'--
'write to the control register in the DS1678 RTC
'Write1678control:’comment out because its used only once at the start
' I2cstart
' I2cwbyte &B10010100 'send device code (writing)
' I2cwbyte &H0E 'send address of first byte to access
' I2cwbyte Control
' I2cstop
'Return

'--
'read Status Register in DS1678 RTC into Temp register
'Read1678status:
 'send address to read data from
' I2cstart
' I2cwbyte &B10010100 'send device code (writing)
' I2cwbyte &H0F 'send address of first byte to access
' I2cstop
 'read data from that address
' I2cstart
' I2cwbyte &B10010101 'send device code (reading)
' I2crbyte Temp , Nack 'get just the one byte
' I2cstop
'Return

'--
'read Control Register in DS1678 RTC into Temp register
'Read1678control:
 'send address to read data from
' I2cstart
' I2cwbyte &B10010100 'send device code (writing)
' I2cwbyte &H0E 'send address of first byte to access
' I2cstop
 'read data from that address
' I2cstart
' I2cwbyte &B10010101 'send device code (reading)

623

' I2crbyte Temp , Nack 'get just the one byte
' I2cstop
' Cls
' Lcd Temp
' Wait 10
'Return

'--
'Startrtc:
' Cls
' Wait 1
' Control = &B00000111
 'me=0
 'clr=0 clear the RTC memory
 'dis1=0 dis0=0
 'ro=0 '
 'tr1=1 tr0=1 '
 'ce=1 RTC clock on
' Gosub Write1678control
' Lcd "written control"
' Wait 1
' Century = 20
' Year = 03
' Month = 8
' Day = 24
' _Dayofweek = 7
' Hours = 16
' Minutes = 44
' Seconds = 50
' Gosub Write1678time
' Cls
' Lcd "written time"
' Wait 1
'Return

624

43 Plant watering timer student project
A client needed a system to control a small pump for an indoor garden, here is Ishan’s project.

43.1 System block diagram

43.2 State machine

ATMega16

Real
Time
Clock

Plant Watering Controller
System Block Diagram LCD 40 character x 2 lines

RELAY

PUMP

625

43.3 Program code

'--
' 1. Title Block
' Plant WateringTimer v0.10
' Ishan 2006
'--
' 2. Program Description:
' statemachine implementation for pump timer
' read the time from the RTC
' display it on the LCD
' 3. Hardware Features:
' Dallas DS1678 connected with 32.768khz crystal and battery backup
' SDA on A.2 SCL on A.3
' LCD on portc - note the use of 4 bit mode and only 2 control lines
' 5 switches on portB.0, B.1, D.2, D.3, D.6
' 4. Program Features:
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the crystal we are using
$regfile = "m32def.dat" 'the micro we are using
'$noramclear 'so the compiler saves on memory
'$lib "mcsbyteint.lbx"
'--
' 6. Hardware Setups
' setup direction of all ports
'Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Pinb.0 = Input 'switch
Config Pinb.1 = Input 'switch
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
Config Pind.2 = Input 'switch
Config Pind.3 = Input 'switch
Config Pind.6 = Input 'switch
Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.1 , Rs =
Portc.0
Config Lcd = 40 * 2 'configure lcd screen
Config Sda = Porta.2
Config Scl = Porta.3
' 7. Hardware Aliases
Sw_5 Alias Pinb.0
Sw_4 Alias Pinb.1
Sw_3 Alias Pind.2
Sw_2 Alias Pind.3
Sw_1 Alias Pind.6
Pump Alias Portb.2
' 8. initialise ports so hardware starts correctly, activate pullups on sw's
Porta = &B11110000 'turns off LEDs
Portb = &B11111111 'turns off LEDs
Portc = &B11111111 'turns off LEDs
Portd = &B01111111 'turns off LEDs
Reset Pump ' turn the pump off'
'--

626

' 9. Declare Constants
Const State_main = 0
Const State_pumpon = 1
Const State_pumpoff = 2
Const State_change_time = 3
Const State_change_pumptime = 4
Const State_change_pumpdur = 5
'--
' 10. Declare Variables

Dim Curr_state As Byte 'the state machine variable
Dim Switch As Byte 'which switch is pressed
Dim Pump_hours As Byte
Dim Pump_mins As Byte
Dim Pump_dur As Byte
Dim Cursor_posn As Byte
Dim Oldseconds As Byte
'RTC variables for a DS1678
Dim Control As Byte
Dim Temp As Byte
Dim Century As Byte
Dim Year As Byte
Dim Month As Byte
Dim Day As Byte
Dim _dayofweek As Byte
Dim Hours As Byte
Dim Minutes As Byte
Dim Seconds As Byte

' 11. Initialise Variables
Curr_state = State_main 'begin here
Cursor_posn = 1
Century = 20
'Control = &B00000111 'tell rtc to go on battery
'me=0
'clr=0 clear the RTC memory
'dis1=0 dis0=0
'ro=0 '
'tr1=1 tr0=1 '
'ce=1 RTC clock on

'--
' 12. Program starts here
Cls
Cursor Off
Lcd "welcome to the pump controller"
Wait 1
Cls

627

'--
'state machine implementation
Do
 'read switches (common to all states so put here)
 Switch = 0
 Debounce Sw_1 , 0 , S1 , Sub
 Debounce Sw_2 , 0 , S2 , Sub
 Debounce Sw_3 , 0 , S3 , Sub
 Debounce Sw_4 , 0 , S4 , Sub
 Debounce Sw_5 , 0 , S5 , Sub
 'action the current state
 Select Case Curr_state
 Case State_main : Gosub Sub_main
 Case State_pumpon : Gosub Sub_pumpon
 Case State_pumpoff : Gosub Sub_pumpoff
 Case State_change_time : Gosub Sub_change_time
 Case State_change_pumptime : Gosub Sub_change_pumptime
 Case State_change_pumpdur : Gosub Sub_change_pumpdur
 End Select
Loop
End

'--

'switch routines
S1:

 Switch = 1
Return

S2:

 Switch = 2
Return

S3:

 Switch = 3
Return

S4:

 Switch = 4
Return

S5:

 Switch = 5
Return

628

'--
'individual states’ routines

Sub_main:

 'display pump condition
 Locate 1 , 1
 Lcd "pump is "
 If Pump = 0 Then
 Lcd "OFF"
 Else
 Lcd "ON "
 End If

 'get and display the time
 Gosub Read1678time 'read the rtc (ds1678)
 Gosub Displaytime 'put time on the display
 'display user instructions on second line
 Locate 2 , 1
 Lcd "TurnOn TurnOff SetTime PumpTime Dur"

 'if user has pressed a switch action their choice
 'but prior to changing to the new state setup any parameters
 Select Case Switch
 Case 1 : Cls
 Curr_state = State_pumpon
 Case 2 : Cls
 Curr_state = State_pumpoff
 Case 3 : Cls
 Gosub Displaytimedate 'get current time
 Cursor_posn = 1 'start with known cursor position
 Locate 1 , Cursor_posn 'tell display to start there
 Cursor On Blink 'let the user see the cursor
 Curr_state = State_change_time
 Case 4 : Cls
 Curr_state = State_change_pumptime
 Case 5 : Cls
 Curr_state = State_change_pumpdur
 End Select

 'see if it is time to turn pump on/off
 Gosub Check_pumptime

Return

Sub_pumpon:

 Set Pump
 Curr_state = State_main

Return

629

Sub_pumpoff:
 Reset Pump
 Curr_state = State_main

Return

Sub_change_pumptime:

 'display the time and instructions
 Locate 1 , 1
 Lcd " pump will go on at "
 Locate 1 , 21
 If Pump_hours < 10 Then Lcd "0"
 Lcd Pump_hours
 Lcd ":"
 If Pump_mins < 10 Then Lcd "0"
 Lcd Pump_mins
 'display switch actions
 Locate 2 , 1
 Lcd " -hr +hr -min +min save"
 'action any switch press
 If Switch = 1 Then Gosub Decr_hours
 If Switch = 2 Then Gosub Incr_hours
 If Switch = 3 Then Gosub Decr_mins
 If Switch = 4 Then Gosub Incr_mins
 If Switch = 5 Then Gosub Save_pumptime
 'if the max pump duration is 25 then
 'it makes sense not to have the time cross midnight
 'so make sure pump time is not greater than 11:30pm
 If Pump_hours = 23 Then
 If Pump_mins > 30 Then Pump_mins = 30
 End If

Return

Sub_change_time:

 Locate 2 , 1
 Lcd " left right decr incr save"
 If Switch = 1 Then Gosub Cursor_left
 If Switch = 2 Then Gosub Cursor_right
 If Switch = 3 Then Gosub Decrement
 If Switch = 4 Then Gosub Increment
 If Switch = 5 Then Gosub Save_time

Return

Sub_change_pumpdur:

 Locate 2 , 1
 Lcd " 5min 10min 15min 20min 25min"
 Select Case Switch

 Case 1 : Pump_dur = 5
 Case 2 : Pump_dur = 10
 Case 3 : Pump_dur = 15
 Case 4 : Pump_dur = 20
 Case 5 : Pump_dur = 25

 End Select
 If Switch > 0 Then Gosub Save_pumpdur

Return

630

'--
'auxuillary routines
Save_pumpdur:

 Curr_state = State_main
 'save pump_dur

Return

Check_pumptime:
Return

Displaytime:

 Locate 1 , 16
 If Hours < 10 Then Lcd "0"
 Lcd Hours
 Lcd ":"
 If Minutes < 10 Then Lcd "0"
 Lcd Minutes
 Lcd ":"
 If Seconds < 10 Then Lcd "0"
 Lcd Seconds
 Locate 1 , 28
 Lcd Pump_hours
 Lcd ":"
 Lcd Pump_mins
 Locate 1 , 36
 Lcd Pump_dur
 Lcd "min"

Return

Displaytimedate:

 Locate 1 , 1
 Select Case _dayofweek
 Case 1 : Lcd "Mon"
 Case 2 : Lcd "Tue"
 Case 3 : Lcd "Wed"
 Case 4 : Lcd "Thu"
 Case 5 : Lcd "Fri"
 Case 6 : Lcd "Sat"
 Case 7 : Lcd "Sun"
 End Select
 Lcd " "
 Select Case Month
 Case 1 : Lcd "Jan"
 Case 2 : Lcd "Feb"
 Case 3 : Lcd "Mar"
 Case 4 : Lcd "Apr"
 Case 5 : Lcd "May"
 Case 6 : Lcd "Jun"
 Case 7 : Lcd "Jul"
 Case 8 : Lcd "Aug"
 Case 9 : Lcd "Sep"
 Case 10 : Lcd "Oct"

631

 Case 11 : Lcd "Nov"
 Case 12 : Lcd "Dec"
 End Select
 Lcd " "
 If Day < 10 Then Lcd "0" 'insert a leading zero
 Lcd Day
 Lcd " "
 Lcd Century
 If Year < 10 Then Lcd "0"
 Lcd Year
 Lcd " "
 Locate 1 , 17
 If Hours < 10 Then Lcd "0"
 Lcd Hours
 Lcd ":"
 If Minutes < 10 Then Lcd "0"
 Lcd Minutes
 Lcd ":"
 If Seconds < 10 Then Lcd "0"
 Lcd Seconds

Return

'--
'the pump on time routines
Incr_hours:

 Incr Pump_hours
 If Pump_hours > 23 Then Pump_hours = 0

Return

Decr_hours:

 Decr Pump_hours
 If Pump_hours > 23 Then Pump_hours = 23

Return

Incr_mins:

 Incr Pump_mins
 If Pump_mins > 59 Then Pump_mins = 0

Return

Decr_mins:

 Decr Pump_mins
 If Pump_mins > 59 Then Pump_mins = 59

Return

Save_pumptime:
'save into eeprom
‘not implemented yet
Return

632

'--
'Time modification routines
Increment:

 Select Case Cursor_posn
 Case 1 : Incr _dayofweek
 If _dayofweek > 7 Then _dayofweek = 1
 Case 5 : Incr Month
 If Month > 12 Then Month = 1
 Case 10 : Incr Day
 If Day > 31 Then Day = 1
 Case 15 : Incr Year
 If Year > 12 Then Year = 0
 Case 18 : Incr Hours
 If Hours > 23 Then Hours = 0
 Case 21 : Incr Minutes
 If Minutes > 59 Then Minutes = 0
 Case 24 : Incr Seconds
 If Seconds > 59 Then Seconds = 0
 Case Else:
 End Select
 Gosub Displaytimedate

Return

Decrement:

 Select Case Cursor_posn
 Case 1 : Decr _dayofweek
 If _dayofweek < 1 Then _dayofweek = 7
 Case 5 : Decr Month
 If Month < 1 Then Month = 12
 Case 10 : Decr Day
 If Day < 1 Then Day = 31
 Case 15 : Decr Year
 If Year = 255 Then Year = 0
 Case 18 : Decr Hours
 If Hours = 255 Then Hours = 23
 Case 21 : Decr Minutes
 If Minutes = 255 Then Minutes = 59
 Case 24 : Decr Seconds
 If Seconds = 255 Then Seconds = 59
 Case Else:
 End Select
 Gosub Displaytimedate

Return

633

Cursor_left:
 Select Case Cursor_posn

 Case 1 : Cursor_posn = 24
 Case 24 : Cursor_posn = 21
 Case 21 : Cursor_posn = 18
 Case 18 : Cursor_posn = 15
 Case 15 : Cursor_posn = 10
 Case 10 : Cursor_posn = 5
 Case 5 : Cursor_posn = 1

 End Select
 Locate 1 , Cursor_posn

Return

Cursor_right:

 Select Case Cursor_posn
 Case 1 : Cursor_posn = 5
 Case 5 : Cursor_posn = 10
 Case 10 : Cursor_posn = 15
 Case 15 : Cursor_posn = 18
 Case 18 : Cursor_posn = 21
 Case 21 : Cursor_posn = 24
 Case 24 : Cursor_posn = 1

 End Select
 Locate 1 , Cursor_posn

Return

Save_time:

 Cursor_posn = 1
 Cls
 Cursor Off
 Gosub Write1678time
 Curr_state = State_main

Return
'--
'RTC routines
'read time and date from 1678
Read1678time: 'RTC Real Time Clock

 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H00 'send address of first byte to access
 I2cstop
 I2cstart
 I2cwbyte &B10010101 'send device code (reading data)
 I2crbyte Seconds , Ack
 I2crbyte Minutes , Ack
 I2crbyte Hours , Ack
 I2crbyte _dayofweek , Ack
 I2crbyte Day , Ack
 I2crbyte Month , Ack
 I2crbyte Year , Ack
 I2crbyte Century , Nack
 I2cstop
 Seconds = Makedec(seconds)
 Minutes = Makedec(minutes)

634

 Hours = Makedec(hours)
 _dayofweek = Makedec(_dayofweek)
 Day = Makedec(day)
 Month = Makedec(month)
 Year = Makedec(year)
 Century = Makedec(century)

Return
'write the time and date to the DS1678 RTC
Write1678time: 'RTC Real Time Clock

 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H00 'send address of first byte to access
 Temp = Makebcd(seconds) 'seconds
 I2cwbyte Temp
 Temp = Makebcd(minutes) 'minutes
 I2cwbyte Temp
 Temp = Makebcd(hours) 'hours
 I2cwbyte Temp
 Temp = Makebcd(_dayofweek) 'day of week
 I2cwbyte Temp
 Temp = Makebcd(day) 'day
 I2cwbyte Temp
 Temp = Makebcd(month) 'month
 I2cwbyte Temp
 Temp = Makebcd(year) 'year
 I2cwbyte Temp
 Temp = Makebcd(century) 'century
 I2cwbyte Temp
 I2cstop

Return
 'write to the control register in the DS1678 RTC
Write1678control:

 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H0E 'send address of first byte to access
 I2cwbyte Control 'control must have COE set to 1 to enable osc
 I2cstop

Return
'read Control Register in DS1678 RTC into Temp register
Read1678control:

 Lcd Control
 Wait 5
 'send address to read data from
 I2cstart
 I2cwbyte &B10010100 'send device code (writing)
 I2cwbyte &H0E 'send address of first byte to access
 I2cstop
 'read data from that address
 I2cstart
 I2cwbyte &B10010101 'send device code (reading)
 I2crbyte Control , Nack 'get just the one byte
 'I2crbyte Status , Nack 'get just the one byte
 I2cstop

Return

635

44 Bike audio amplifier project

In this case the client wanted an easy to use and safe audio system
for mountain biking.
 The solution was to have a small box containing the circuit and
battery mounted to the rear of the helmet and speakers clipped onto
the helmet near the ears but not blocking out surrounding sounds from
other bikers.
There are 3 buttons on the device VOL UP, VOL DOWN and MUTE.
The amplifier is a common TDA2822 stereo audio amp and there is a
digital potentiometer controlled by an ATTiny13 to manage the volume
settings.

The DS1267 digital pot has 256 settings and requires a serial signal of 17 bits in length sent to it to
control it. Bascom has a serial out command however it sends 8 bits, Jonathan decided to ‘bit-bang’ it
(send serial bit by bit via software rather than using any hardware device).

636

637

'--
'1.title blcok
'author: jonathan
'date: 2 july 2008
' version 7.0
'file name:potentiometer control7.bas
'--
'2.program descrption
'manually shifts out 17 bits to digital potentiometer
'uses buttons to select data to be sent out
'3.hardware features
'2 switches and 3 wire serial interface to digital pot on one port
'--
'5. complier directives
$regfile = "atTiny13.dat"
$crystal = 1200000
$hwstack = 20
$swstack = 8
$framesize = 20
'--
'6. define hardware
Config Portb = Output
Config Pinb.2 = Input
Config Pinb.1 = Input
Config Pinb.5 = Input
Set Pinb.5
Set Pinb.2
Set Pinb.1
'--
'7. hardware aliases
Qb Alias Portb.0
Clk Alias Portb.3
Rst Alias Portb.4
Sw_up Alias Pinb.2
Sw_down Alias Pinb.1
Sw_mute Alias Pinb.5

'8. initialise hardware ports so program starts correctly
Rst = 0
Qb = 0
Clk = 0

'---
'9.declare constants

'10. declare variables
Dim V As Byte
Dim B As Byte
Dim S As Byte
Dim State As Bit
'11. initialise variables
B = 8
State = 0

638

'12. main program code
Gosub Caseselect
Do

 Debounce Sw_up , 1 , Up , Sub
 Debounce Sw_down , 1 , Down , Sub
 Debounce Sw_mute , 1 , Mute , Sub

Loop
'---
'13. subroutines
Up:

 B = B + 1
 If B > 22 Then B = 22
 Gosub Caseselect

Return

Down:

 B = B - 1
 If B < 1 Then B = 1
 Gosub Caseselect

Return

Caseselect:

 Select Case B
 Case 1 : V = 0
 Case 2 : V = 4
 Case 3 : V = 10
 Case 4 : V = 16
 Case 5 : V = 25
 Case 6 : V = 35
 Case 7 : V = 50
 Case 8 : V = 65
 Case 9 : V = 80
 Case 10 : V = 100
 Case 11 : V = 120
 Case 12 : V = 145
 Case 13 : V = 170
 Case 14 : V = 200
 Case 15 : V = 230
 Case 16 : V = 255

 End Select
 Gosub Send

Return

Mute:

 If State = 0 Then
 State = 1
 S = V
 V = 0

 Else
 V = S
 State = 0

 End If
 Gosub Send

Return

639

Send:
 ‘bit bang 17 bits of serial data to digital pot
 Rst = 1
 Qb = 1 '1
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.7 '2
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.6 '3
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.5 '4
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.4 '5
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.3 '6
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.2
 Clk = 1 '7
 Qb = 0
 Clk = 0
 Qb = V.1
 Clk = 1 '8
 Qb = 0
 Clk = 0
 Qb = V.0 '9
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.7 '9
 Clk = 1
 Qb = 0
 Clk = 0
 Qb = V.6
 Clk = 1 '11
 Qb = 0
 Clk = 0
 Qb = V.5
 Clk = 1 '12
 Qb = 0
 Clk = 0
 Qb = V.4
 Clk = 1 '13

640

 Qb = 0
 Clk = 0
 Qb = V.3
 Clk = 1 '14
 Qb = 0
 Clk = 0
 Qb = V.2
 Clk = 1
 Qb = 0 '15
 Clk = 0
 Qb = V.1
 Clk = 1
 Qb = 0 '16
 Clk = 0
 Qb = V.0 '17
 Clk = 1
 Qb = 0
 Clk = 0
 Rst = 0
Return

641

45 Graphics LCDs

45.1 The T6963 controller

There are a number of different types of graphics LCDs; this display is based on the T6963 driver IC.
The display is from TRULY and is 240 pixels wide x 64 pixels high.

The LCD is a complex circuit as shown in the block diagram below, however Bascom has built in
routines to drive it which makes it very straight forward to use. There are also built in fonts so it can be
used in a similar way to a character LCD (the FS pin is used to select either a 6x8 or 5x7 size font).

A Bascom program requires a config line for the display:
Config Graphlcd = 240 * 64 , Dataport = Portc , Controlport = Portd , Ce = 4 , Cd = 1 ,

Wr = 6 , Rd = 5 , Reset = 0 , Fs = 7 , Mode = 6

642

System Block Diagram for this student’s clock project.

The (almost) finished product.

643

644

The big digits are actually 10 individual pictures which are selected to be displayed on the
screen.

Each one is created in a simple drawing program like MS Paint. Use exactly the size BMP file
you want the picture to be, in MSPaint the attributes can be set from the menu. Each digit
was 24 pixels wide and 40 pixels high (they need to be in multiples of 8 pixels).

In Bascom open the Graphic Converter, load the bitmap image and then save the file as a
BGF (Bascom graphics file) into the directory where the program will be.

The full program is not listed here however the routine to display the time is.

645

Displaybigtime:
 'first digit
 Digit = 1 'first digit
 Pic_y = 16 'fixed location up the GLCD for each graphic
 For Digit = 1 To Numdig 'for each digit location on the GLCD
 Select Case Digit ‘get the location of the digit on the display
 Case 1 : Pic_x = 16 at x=16
 Dig = Hours / 10 ' display tens of hours
 Case 2 : Pic_x = 40 'units of hours go at x=40
 Dig = Hours Mod 10
 Case 3 : Pic_x = 80 'tens of minutes
 Dig = Minutes / 10
 Case 4 : Pic_x = 112 'unit minute
 Dig = Minutes Mod 10
 Case 5 : Pic_x = 144 'tenth second
 Dig = Seconds / 10
 Case 6 : Pic_x = 176 'unit second
 Dig = Seconds Mod 10
 End Select
 Select Case Dig 'actually display the picture at the location
 Case 0 : Showpic , Pic_x , Pic_y , Zero
 Case 1 : Showpic , Pic_x , Pic_y , One
 Case 2 : Showpic , Pic_x , Pic_y , Two
 Case 3 : Showpic , Pic_x , Pic_y , Three
 Case 4 : Showpic , Pic_x , Pic_y , Four
 Case 5 : Showpic , Pic_x , Pic_y , Five
 Case 6 : Showpic , Pic_x , Pic_y , Six
 Case 7 : Showpic , Pic_x , Pic_y , Seven
 Case 8 : Showpic , Pic_x , Pic_y , Eight
 Case 9 : Showpic , Pic_x , Pic_y , Nine
 End Select
 Next
Return
 Zero: ‘labels are required for each picture
 $bgf "zero_6.bgf"
 One:
 $bgf "one_6.bgf"
 Two:
 $bgf "two_6.bgf"
 Three:
 $bgf "three_6.bgf"
 Four:
 $bgf "four_6.bgf"
 Five:
 $bgf "five_6.bgf"
 Six:
 $bgf "six_6.bgf"
 Seven:
 $bgf "seven_6.bgf"
 Eight:
 $bgf "eight_6.bgf"
 Nine:
 $bgf "nine_6.bgf"

646

45.2 Graphics LCD (128x64) – KS0108

In this project the goal is to keep the final product the same size as the LCD. And as it was a
one off veroboard was a good choice.

Veroboard is straight forward
to use however to get a good
product requires some careful
planning.

Here the Veroboard, LCD,
datasheet for the
Microcontroller showing its pin
connections and the
datasheet for the LCD
showing its pin connections
are in use to help decide on
the ciruit and layout.

(The display was purchase
from sure-electronics)

647

The circuit was drawn up next. It
shows a trimpot between pins 18 and 3
of the LCD. This is the contrast
adjustment for the LCD.

It is
always a
balance
working
out which
pins on the
micro to connect to the I/O
devices. In this case it is a
process of elimination of
constraints.

It was decided not to use
PortB because sometimes
I/O devices can interfere
with uploading programs
and the LCD would have to
be removed everytime you
want to program. Port A
has the
ADC on it
and if a
touch
screen is
required we must
have at least 2 ADC
pins available. Port D has interrupt pins and is more likely
to be useful in the future than portC, so portC was chosen
for the 8 data lines. Choosing the port for the 6 control lines
was easy, portA, as we will have 2 spare. Note that it is a good idea not to write data to the LCD while doing an ADC conversion as this could mess up
the ADC results. 0.1uf (100nF) bypass capacitors were added to the circuit, one on the power pins of the micro and one next to the power pins of the
LCD, these stop voltage spikes on the power supply caused by fast switching devices like microcontrollers and LCDs upsetting the power supply to
other devices like microcontrollers, LCDs and any other ICs that will be added. We need to bypass each device with a capacitor real close to the IC.

648

To make assembly easier to
follow the IC was mounted
right up to the edge of the
board so that its portc pins
physically lined up with the 8
datalinesof the LCD. This
reduced the wiring.

Before attempting to do the
wiring of the micro to the LCD
a label was placed onto the IC
socket with the names of the
pins, and the names of the
LCD pins were written using a
permanent marker onto the
board itself. This really helps
avoid confusion when flowing
the schematic.

The 5V and 0V/GND lines
were coloured red and black
on the board. The reason
these are where they are on
the veroboard is that they line
up with the power pins of the
LCD.

The 7805 was positioned so that it
was directly onto the 5V and 0V lines.

There is plenty of space left on the
board for other circuitry. Perhaps a
real time clock and a touch screen
connection.

649

The code for the display is straight forward
'--
' Title Block
' Author: B.Collis
' Date: 1 June 2008
' File Name: GLCD_KS_ver1.bas
'--
' Program Description:
' A simple clock
' Hardware Features:
' 128x64 GLCD
'--
' Compiler Directives (these tell Bascom things about our hardware)
$regfile = "m32DEF.dat" ' specify the used micro
$crystal = 8000000 ' used crystal frequency
$lib "glcdKS108.lib" ' library of display routines
'--
' Hardware Setups
'Configure GLCD interface
'CE CS1 select pin15 CE A.3
'CE2 CS2 select2 pin16 CE2 A.4
'CD DI pin4 CD A.7
'RD Read pin5 RD A.6
'RESET reset pin17 R A.2
'ENABLE Chip Enable pin6 En A.5
Config Graphlcd = 128 * 64sed , Dataport = Portc , Controlport = Porta , Ce = 3 , Ce2 = 4 ,
Cd = 7 , Rd = 6 , Reset = 2 , Enable = 5
'Hardware Aliases
'--
' Declare Constants
Const Runningdelay = 170
'--
' Declare Variables
Dim X As Byte
Dim Y As Long
' 11. Initialise Variables
'Date$ = "14/06/08" 'default starting date
'Time$ = "19:12:00" 'default starting time
'--
' Program starts here
Cls
Setfont Font 16x16 'specify the small font

Lcdat 1 , 1 , " A Cool" 'the rows are from 1 to 8
Lcdat 7 , 1 , "Display" '

Line(8 , 15) -(120 , 15) , 1 'top line
Line(8 , 15) -(8 , 41) , 1 'left vertical line
Line(120 , 15) -(120 , 41) , 1 'right vertical line

For Y = 41 To 45 'own simple filledbox
 Line(8 , Y) -(120 , Y) , 1
Next

'show the three pics in sequence to get simple animation

650

Do
 For X = 10 To 104 Step 8
 Showpic X , 20 , Run1
 Waitms Runningdelay
 Showpic X , 20 , Blank
 X = X + 8
 Showpic X , 20 , Run2
 Waitms Runningdelay
 Showpic X , 20 , Blank
 X = X + 8
 Showpic X , 20 , Run3
 Waitms Runningdelay
 Showpic X , 20 , Blank
 Next
 Waitms 500
Loop
End 'end program

'--
'the font and graphic files must be in the same directory as the .bas file
'these lines put the fonts into the program flash
$include "font16x16.font"

Run1:
$bgf "run1.bgf"
Run2:
$bgf "run2.bgf"
Run3:
$bgf "run3.bgf"
Blank:
$bgf "blank.bgf"

651

45.3 Generating a negative supply for a graphics LCD

These particular displays were available at a very good price; however they did not have the
negative voltage circuit on the display for the contrast adjustment making them a little trickier
to use.

This block diagram shows the power supply voltages required and how they were developed.
The 317 is an adjustable regulator and a trimpot on it will be used to vary the voltage and
consequently the LCD’s contrast.

7805
voltage

regulator

ICL7660
negative
voltage

 converter

Microcontroller

317
voltage

regulator

10VVoltage input
approx 15V DC

Graphics LCD
-10V

5V

5V

652

653

46 GLCD Temperature Tracking Project

46.1 Project hardware

In thisproject I wanted to use a GLCD to display a graph of temperature and humidity over time.
I had the following:

a 192x64 pixel GLCD (KS0108 type from Sure Electronics)
an LM35 temperature sensor
an HiH4030 humidity sensor

The 192x64 GLCD has
1 more interface pin
than the 128x64 GLCD
as it has a third
controller for the
display. This makes a
total of 7 control lines
between the
microcontroller and the
GLCD. When I
designed this board for
student use I decided
that the data lines

could be on PortB (shared with the programming port – which is ok if you add the 10k resistors
as per the schematic) and that the control lines would have to be flexible so that depending on
the use for the board the students could change them.

Microcontroller

HiH 4030
Humidity
Sensor

LM35
Tempr
Sensor

8 data lines

7 control lines

192 x 64 KS0108 GLCD
Temperature and Humidity plotter

654

In this photo the fine yellow wires are the 7 control lines added later.

In the software Bascom has a different library for this GLCD so it must be added and your
wiring above must be configured in the software as below.
'--

' Compiler Directives (these tell Bascom things about our hardware)

$lib "glcdKS108-192x64.lib" ' library of display routines

'--

' Hardware Setups

'Configure GLCD interface

'CE CS1 select GLCD-pin15 CE portC.3

'CE2 CS2 select2 GLCD-pin17 CE2 portC.5

'CE3 CS3 select3 GLCD-pin18 CE6 portC.6

'CD RS GLCD-pin4 CD portC.0

'RD RW GLCD-pin5 RD portC.1

'RESET reset GLCD-pin16 R portC.4

'ENABLE Chip Enable GLCD-pin6 En portC.2

Config Graphlcd = 192 * 64sed , Dataport = Portb , Controlport = Portc

, Ce = 3 , Ce2 = 5 , Cd = 0 , Rd = 1 , Reset = 4 , Enable = 2 , Ce3 =

6

655

46.2 Project software planning

This is a realtively complex system which will require some interesting software to plot a graph
of values so I will use decomposition to break the software down into subroutines each with its
own job to do.

The least complex parts of the software for the project will be the displaying of the graph scales
and the values, the next will be reading the values from the sensors and translating these to
humidity and temperature, the most challenging will be the last part actually graphing the
values.

Here is what the display looks like with the graph scales and the temperature and humidity
values displayed.

graph the
tempr and

humidity values

Temperature & Humidity Logger

save
humidity
values

draw the
graph scales
 on the GLCD

get
humidity

get
Tempr

save
tempr
values

display
humidity

display
tempr

656

46.3 Draw the graph scales
'--

Draw_graph_scales:

 Line(12 , 0) -(12 , 52) , 1 'left vertical

 Line(178 , 0) -(178 , 52) , 1 'right vertical

 Line(12 , 53) -(178 , 53) , 1 'bottom horizontal

 'left hand side humidity scale

 Setfont Font 8x8

 Lcdat 4 , 3 , "H"

 Pset 11 , 0 , 1

 Pset 11 , 10 , 1

 Pset 11 , 20 , 1

 Pset 11 , 30 , 1

 Pset 11 , 40 , 1

 Pset 11 , 50 , 1

 Setfont Font 5x5

 Line(0 , 0) -(0 , 4) , 1 '1 in the 100 to save space

 Lcdat 1 , 2 , "00"

 Lcdat 7 , 0 , "50"

 'right hand side temperature scale

 Setfont Font 8x8

 Lcdat 4 , 3 , "T"

 Pset 179 , 0 , 1

 Pset 179 , 10 , 1

 Pset 179 , 20 , 1

 Pset 179 , 30 , 1

 Pset 179 , 40 , 1

 Pset 179 , 50 , 1

 Setfont Font 5x5

 Lcdat 1 , 181 , "50"

 Lcdat 7 , 181 , "0"

Return

This routine makes use of some of the Bascom functions for the display and use two different
font sizes. I use comments to help me to remember what each part does.

There is one small point to make about the 100 on the left of the display. I wanted to maximise
the display space for plotting values so when I went to display the number 100 it took up a lot of
space as each character is 5 pixels wide. I reduced that by drawing a line in place of the
character 1 and then putting in “00” after it, thus reducing my width for the 100 from 15 pixels to
12, leaving me room for 3 more data point in the display itself. When I went to draw the check
marks for the scale I wrote the check mark over the top of the last 0 increasing my display by
another data point. I now have 165 data points that I can use to display values out fo the full
192 pixels width.

657

46.4 Read the values

The LM35 temperature sensor has been covered already but note the conversion from volts to
degrees. To do this I measured the voltage on the LM35 it was 0.282V (28.2 degrees) the ADC
value was 56 (on a scale from 0 to 1023) and as I know there is a straight line relationship
between the two that starts at 0. I got a simple conversion factor of 1.9858. In maths I might
express that as a formula of the type Y=mX+C or in this case Tempr = conversion factor times
ADC reading (plus zero for C as the graph crosses at 0 volts).

'--

Get_tempr:

' lm35 temperature sensor on pinA.7

' calibrated at adc=56 and temperature=28.2deg (0.282V)

' 56/28.2 = 1.9858

 Lm35 = Getadc(7) 'get the raw analog reading

 Tempr_single = Lm35 'convert to single to use decimals

 Tempr_single = Tempr_single / 1.9858

 Tempr = Tempr_single 'convert to byte for storage

Return

Disp_tempr_val:

 Setfont Font 8x8

 Lcdat 8 , 145 , Tempr_single

 Lcdat 8 , 176 , "C"

Return '

'--

Note the need to convert the between different variable types.
The ADC readings are whole numbers in the range of 0 to 1023, so these are initially word
types(e.g LM35 above). I want to do division with these though and word type variables
truncate division so I convert the values to single variable types (tempr_single above). After I
have finished doing the fomula I want to store the values in memory and I want to store a lot of
them so I convert the values to byte type variables which take up much less space (e.g. tempr
above)

I used the HIH4030 humidity sensor, it can be bought from Sparkfun.com mounted on a small
PCB. It is another easy to use analogue sensor and has a very linear scale so a straight
forward formulae is required.

In this case the voltage corresponds to a humidity value which we look up on a graph from the
datasheet.
I measured 2.37V which was an ADC value of 480.
An ADC value of 480 (2.37V) is a humidity of about 55% on the graph.

658

Note that 0% humidity is not 0V (as it is with the LM35 for temperature) so our formula is more
in the form Y=mX+C.From the graphI estimated that the formula is Voltage=0.0306 x humidity
+ 0.78.
To get humidity I changed this around to be humidity = (Voltage-0.78)/0.0306.

'--

Get_humidity:

' humidity sensor HIH4030 on pin a.4

' calibrated at adc=480 and voltage = 2.37

' formula for hum=(V-0.78)/0.0306 - worked out from datasheet

 Hih4030 = Getadc(4) 'get raw adc value

 Hum_single = Hih4030 'convert to single

 Hum_single = Hum_single / 203.85 'convert raw adc to volts

 Hum_single = Hum_single - 0.78

 Hum_single = Hum_single / 0.0306

 Humidity = Hum_single 'convert to byte for storage

Return

Disp_humidity_val:

 Setfont Font 8x8

 Lcdat 8 , 10 , Hum_single 'single to display decimal

value

 Lcdat 8 , 44 , "%"

Return

659

46.5 Store the values

First I need to store 165 readings for each so I dimension two arrays
Dim T(165) As Byte '165 readings stored

Dim H(165) As Byte

The first location is T(1) and then next T(2) all the way up to T(165).

In the main loop I wait for 5 minutes (wait 300) between readings and after each reading I
increase a variable which is keeping track of the number of readings. I also do not want to go
over 165 so I test this variable and reset it back to 1 if it goes over 165.
'--

' Program starts here

'setup inital screen

Cls

Gosub Draw_graph_scales

Do

 Gosub Get_humidity

 Gosub Save_humidity

 Gosub Get_tempr

 Gosub Save_tempr

 Gosub Disp_humidity_val

 Gosub Disp_tempr_val

 Gosub Draw_tempr_hum_graphs

 Wait 300 'reading every 5 minutes

 Incr Curr_reading

 If Curr_reading > 165 Then Curr_reading = 1

Loop

End

I have two routines for storing the values in ram even though I could do it in one subroutine and
call it something like save_values. This is because each has a slightly different function to
perform and if I extend the program in the future I might want to add features to one routine that
aren’t in the other such as keeping track of the maximum temperature or something else.
'--

Save_humidity:

 H(curr_reading) = Humidity

Return

'--

Save_tempr:

 T(curr_reading) = Tempr

Return

Storing the values is easy I copy the value from the variable Humidity into the array at the
position determined by my increasing variable curr_reading

660

46.6 Plot the values as a graph

What I want the graph to do is to always draw the current value at the very right hand side of
the display. This will achieve the effect of the data scrolling left with each new value.

To do this was not difficult in the end but to understand it may take a little explanation. Note
that I solved it this way, another person might look at this problem and solve it in another (and
even better) way. If my current reading is 80, then I want to draw the data points from 81 to 165
and 1 to 80 inthat order on my graph.

pixel Data

location
in array

If you look at these two sequences you can see the pattern for my
program is that it must lookup the data location which is the pixel
location minus 13, plus current location(80) + 1.

This code does this

 Tmp = Xpos - Graph_left

 Tmp = Tmp + Curr_reading 'exceeds byte size

 Incr Tmp

Of course we want to restart at 1 again after 65 so we add this as well

 If Tmp > 165 Then Tmp = Tmp - 165

When I first wrote the program I declared Tmp as a byte, but that
didn’t work and I got a strange shifting of the display, I realised it was
because tmp can actually get much larger than 255 before I subtract
165 from it.

13 81

14 82

 163

 164

 165

 1

 2

 3

175 78

176 79

177 80

661

The final part of the routine requires me to make sure that the display os blank before I draw
data on it.
There are two ways(at least) that I could do this
I chose to draw a blank vertical line before I put the data at that point.
 Line(xpos , 0) -(xpos , 51) , 0 'remove anything on col already there

I also must plot the actual point.
 Ypos = 50 - T(tmp) 'turn the value into a position

 Pset Xpos , Ypos , T(tmp) 'set the pixel,if > 0

the display points 0,0 is the top left pixel on the display so I turn my temperature value into a
location 50 degrees is at the top, (pixel 0) and 0 degrees is 50 pixels down the display (pixel
50)

Here is the complete loop
Draw_tempr_hum_graphs:

 'draw the two sets of data

 For Xpos = Graph_left To Graph_right

 Line(xpos , 0) -(xpos , 51) , 0 'remove anything on col already there

 Tmp = Xpos - Graph_left

 Tmp = Tmp + Curr_reading 'exceeds byte size

 Incr Tmp

 If Tmp > 165 Then Tmp = Tmp - 165

 Ypos = 50 - T(tmp) 'turn the value into a position

 Pset Xpos , Ypos , T(tmp) 'set the pixel,if > 0

 'Pset Xpos , H(xpos) , 1 'set the pixel

 Next

Return

662

46.7 Full software listing

'--

' Title Block

' Author: Bill Collis

' Date: June 2010

' File Name: HumidityTempLogV1a.bas

'--

' Program Description:

'1 read temperature and humidity and display values

'1a setup graph scales

' read multiple values and store in ram

'1b get storage and display working so that

' data in array goes onto the display with the current reading last

' e.g. if the curr_reading is stored at 125

' then the display shows from 126 to 165 then 1 to 125

'

' Hardware Features:

' 128x64 GLCD on portB and 7 pins of portC

'

' lm35 temperature sensor on pinA.7

' calibrated at adc=56 and temperature=28.2deg (0.282V)

' 56/28.2 = 1.9858

' humidity sensor HIH4030 on pin a.4

' calibrated at adc=480 and voltage = 2.37

' formula for hum=(V-0.78)/0.0306 - worked out from datasheet

'--

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m8535.dat" ' specify the used micro

$crystal = 8000000 ' used crystal frequency

$lib "glcdKS108-192x64.lib" ' library of display routines

'$noramclear

'--

' Hardware Setups

Config Porta.4 = Input 'ADC inputs

Config Porta.7 = Input 'ADC inputs

'Configure GLCD interface

'CE CS1 select GLCD-pin15 CE portC.3

'CE2 CS2 select2 GLCD-pin17 CE2 portC.5

'CE3 CS3 select3 GLCD-pin18 CE6 portC.6

'CD RS GLCD-pin4 CD portC.0

'RD RW GLCD-pin5 RD portC.1

'RESET reset GLCD-pin16 R portC.4

'ENABLE Chip Enable GLCD-pin6 En portC.2

Config Graphlcd = 192 * 64sed , Dataport = Portb , Controlport = Portc , Ce = 3 ,

Ce2 = 5 , Cd = 0 , Rd = 1 , Reset = 4 , Enable = 2 , Ce3 = 6

Config Adc = Single , Prescaler = Auto

Start Adc

'Hardware Aliases

'--

' Declare Constants

Const Graph_left = 13

Const Graph_right = 177

'--

' Declare Variables

Dim X As Byte

Dim Y As Long

Dim Hih4030 As Word

Dim Hum_single As Single 'single for fractional calculations

Dim Humidity As Byte

Dim Lm35 As Word

Dim Tempr_single As Single 'single for fractional calculations

Dim Tempr As Byte

Config Single = Scientific , Digits = 1

663

Dim T(165) As Byte '165 readings stored

Dim H(165) As Byte

Dim Arr_pos As Byte

Dim Curr_reading As Byte

Dim Xpos As Byte

Dim Ypos As Byte

Dim T_ypos As Byte

Dim H_ypos As Byte

Dim I As Byte

Dim Tmp As Word 'temp variable

'initialise variables

Arr_pos = Graph_left 'start here

Curr_reading = 1 'start at 1st location in ram

'--

' Program starts here

'setup inital screen

Cls

Gosub Draw_graph_scales

Do

 Gosub Get_humidity

 Gosub Save_humidity

 Gosub Get_tempr

 Gosub Save_tempr

 Gosub Disp_humidity_val

 Gosub Disp_tempr_val

 Gosub Draw_tempr_hum_graphs

 Wait 300 'reading every 5 minutes

 Incr Curr_reading

 If Curr_reading > 165 Then Curr_reading = 1

Loop

End

'--

Save_humidity:

 H(curr_reading) = Humidity

Return

'--

Save_tempr:

 T(curr_reading) = Tempr

Return

'--

Draw_tempr_hum_graphs:

 'draw the two sets of data

 For Xpos = Graph_left To Graph_right

 Line(xpos , 0) -(xpos , 51) , 0 'remove anything on col already there

 Tmp = Xpos - Graph_left

 Tmp = Tmp + Curr_reading 'exceeds byte size

 Incr Tmp

 If Tmp > 165 Then Tmp = Tmp - 165

 Ypos = 50 - T(tmp) 'turn the value into a position

 Pset Xpos , Ypos , T(tmp) 'set the pixel,if > 0

 'Pset Xpos , H(xpos) , 1 'set the pixel

 Next

Return

'--

Draw_graph_scales:

 Line(12 , 0) -(12 , 52) , 1 'left vertical

 Line(178 , 0) -(178 , 52) , 1 'right vertical

 Line(12 , 53) -(178 , 53) , 1 'bottom horizontal

 'left hand side humidity scale

 Setfont Font 8x8

 Lcdat 4 , 3 , "H"

 Pset 11 , 0 , 1

 Pset 11 , 10 , 1

664

 Pset 11 , 20 , 1

 Pset 11 , 30 , 1

 Pset 11 , 40 , 1

 Pset 11 , 50 , 1

 Setfont Font 5x5

 Line(0 , 0) -(0 , 4) , 1 '1 in the 100 to save space

 Lcdat 1 , 2 , "00"

 Lcdat 7 , 0 , "50"

 'right hand side temperature scale

 Setfont Font 8x8

 Lcdat 4 , 182 , "T"

 Pset 179 , 0 , 1

 Pset 179 , 10 , 1

 Pset 179 , 20 , 1

 Pset 179 , 30 , 1

 Pset 179 , 40 , 1

 Pset 179 , 50 , 1

 Setfont Font 5x5

 Lcdat 1 , 181 , "50"

 Lcdat 7 , 181 , "0"

Return

'--

Get_humidity:

 Hih4030 = Getadc(4) 'get raw adc value

 Hum_single = Hih4030 'convert to single

 Hum_single = Hum_single / 203.85 'convert raw adc numbr to volts

 Hum_single = Hum_single - 0.78

 Hum_single = Hum_single / 0.0306

 Humidity = Hum_single 'convert to byte for storage

Return

Disp_humidity_val:

 Setfont Font 8x8

 Lcdat 8 , 10 , Hum_single 'single to display decimal value

 Lcdat 8 , 44 , "%"

Return

'--

Get_tempr:

 Lm35 = Getadc(7) 'get the raw analog reading

 Tempr_single = Lm35 'convert to single to use decimals

 Tempr_single = Tempr_single / 1.9858

 Tempr = Tempr_single 'convert to byte for storage

Return

Disp_tempr_val:

 Setfont Font 8x8

 Lcdat 8 , 145 , Tempr_single

 Lcdat 8 , 176 , "C"

Return '

'--

'the font and graphic files must be in the same directory as the .bas file

'these lines put the fonts into the program flash

$include "font5x5.font"

'$include "font6x8.font"

$include "font8x8.font"

'$include "font16x16.font"

'$include "font32x32.font"

665

47 Interrupts

Microcontrollers are sequential devices, they step through the program code one step after another
faithfully without any problem, and it is for this reason that they are used reliably in all sorts of
environments. However what happens if we want to interrupt the usual program because some
exception or irregular event has occurred and we want our micro to so something else briefly.

For example, a bottling machine is measuring the drink being poured into bottles on a conveyor. There
could be a sensor connected to the conveyor which senses if the bottle is not there. When the bottle is
expected but not there (an irregular event) the code can be interrupted so that drink is not poured out
onto the conveyor.

All microcontrollers/microprocessors have hardware features called interrupts. There are two interrupt
lines on the ATmega8535, these are pind.2 and pind.3 and are called Int0 and Int1. These are
connected to switches on the development pcb. When using the interrupts the first step is to set up the
hardware and go into a normal programming loop. Then at the end of the code add the interrupt
subroutine (called a handler)

The code to use the interrupt is:

'--
' 1. Title Block
' Author: B.Collis
' Date: 9 Aug 2003
' Version: 1.0
' File Name: Interrupt_Ver1.bas
'--
' 2. Program Description:
' This program rotates one flashing led on portb
' when INT0 occurs the flashing led moves left
' when INT1 occurs the flashing led moves right
' 3. Hardware Features
' Eight LEDs on portb
' switches on INT0 and INT1
' 4. Software Features:
' do-loop to flash LED
' Interrupt INT0 and INT1
'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of operations inside the micro
$regfile = "m8535.dat" ' the micro we are using
'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Output
Config Pind.2 = Input 'Interrupt 0
Config Pind.3 = Input 'Interrupt 1

On Int0 Int0_handler 'if at anytime an interrupt occurs handle it
On Int1 Int1_handler 'if at anytime an interrupt occurs handle it

666

Enable Int0 Nosave 'enable this specific interrupt to occur
Enable Int1 Nosave 'enable this specific interrupt to occur
Enable Interrupts 'enable micro to process all interrupts
' 7. hardware Aliases
' 8. initialise ports so hardware starts correctly
'--
' 9. Declare Constants
'--
' 10. Declare Variables
Dim Pattern As Byte
Dim Direction As Bit
' 11. Initialise Variables
Pattern = 254
Direction = 0
'--
' 12. Program starts here
Do
 If Direction = 1 Then
 Rotate Pattern , Left
 Rotate Pattern , Left
 Else
 Rotate Pattern , Right
 Rotate Pattern , Right
 End If
 Portb = Pattern 'only 1 led on
 Waitms 150
 Portb = 255 ' all leds off
 Waitms 50
Loop
'--
' 13. Subroutines
'--
' 14. Interrupt subroutines
Int0_handler:
 Direction = 1
Return

Int1_handler:
 Direction = 0
Return

Note that enabling interrupts is a 2 step process both the individual interrupt flag and the global
interrupt flag must be enabled.
Exercise
Change the program so that only one interrupt is used to change the direction.
With the other interrupt change the speed of the pattern.

667

47.1 Switch bounce problem investigation

Most peole don’t have an oscilloscope at home to investigate switch bounce but its effects can be seen
in programs. Connecting a poor quality press button switch to portB.2 on an ATMega64 running at
8MHz and running this program reveals what happens with contact or switch bounce.

The interrupt is setup so that when PINB.2 goes low an interrupt occurs. This should happen when the
switch is pressed but not released. When an INT2 occurs a counter value is increased. The main
program loop just sits there displaying the value of count and if a switch on PINB.0 is pressed reset the
count to 0.

'debounce test program

$regfile = "m644def.dat"

$crystal = 8000000

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E =

Portc.1 , Rs = Portc.0

Config Lcd = 20 * 4

Config Portb = Input

Set Portb.0 'pullup resistor on

Set Portb.1 'pullup resistor on

Set Portb.2 'pullup resistor on

Set Portb.3 'pullup resistor on

Set Portb.4 'pullup resistor on

'Interrupt INT2

'this code enables an interrupt on pin INT2

Config Int2 = Falling 'reset count

On Int2 Int2_isr

Enable Int2

Enable Interrupts

Dim Count As Byte

Cls

Cursor Off

Lcd "debounce test"

Do

 If Pinb.0 = 0 Then Count = 0

 Locate 2 , 1

 Lcd "decimal=" ; Count ; " "

 Locate 3 , 1

 Lcd "binary =" ; Bin(count)

 Locate 4 , 1

 Lcd "hex =" ; Hex(count)

Loop

End

'Interrupt service routine - program comes here when int2 pin goes low

Int2_isr:

 Incr Count

Return

The results of this program show how poor quality the switch actually is. A single firm press of the
switch will increase the count by as much as 16 or more, a soft press of the switch can increase the
count by hundreds. In addition to this when the switch is released te variable count also increases as
the countacts bounce when they come apart. Results from 10 trials of a single press and release were
11, 117, 29, 36, 59, 102, 29, 15, 9, 27.

668

47.2 Keypad- polling versus interrupt driven

With the earlier keypad circuits we have had to poll (check them often) to see if a key has been
pressed.

It is not always possible however to poll inputs all the time to see if they have changed it can be much
easier using an interrupt.

In this circuit 4 pins are configured as outputs and 4 as inputs, when a keypad button is pressed down
the 0 on the output pulls the diode down triggering the interrupt.

In the interrupt routine the inputs are read to identify which pin is 0. Then the inputs become outputs
and the outputs become inputs. The outputs are driven low and one of the inputs will become low. This
combination is unique and identifies which key was pressed.

669

Here is the circuit diagram for an ATMega64 with the keypad circuit shown

670

Program code for this keypad
'--
' Title Block
' Author:B.Collis

' File Name: kybd_v2.bas
'--
' Program Description:
' This program reads a keypad using interrupts rather than polling
'--
' Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 ' internal clock
$regfile = "m64def.dat" ' ATMEGA64-16AI
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portc = &B11111111 '1=output 0=input

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 , Db7 = Portb.7 , E = Portb.3 , Rs
= Portb.2
Config Lcd = 20 * 4 'configure lcd screen
'the keypad interrupt
Config Pind.1 = Input 'int INT0
Config Int1 = Falling 'negative edge trigger
On Int1 Int1_int 'go here on interrupt
Enable Interrupts 'global interrupts on

'Hardware Aliases
Keypad_int Alias Pind.1 'not used
Keypad_out Alias Porte
Keypad_dir Alias Ddre
Keypad_in Alias Pine
'Initialise hardware state
Keypad_dir = &B00001111 ' upper half of port input=0, lower half output=1
Keypad_out = &B11110000 ' enable pullups upper 4 bits, lower half port to 0
'--
'Declare Constants
Const Timedelay = 450
Const Debouncetime = 20

'Declare Variables
Dim Keyrow As Byte
Dim Keycol As Byte
Dim Keycode As Byte
Dim Lastkey As Byte 'the last key that was pressed
Dim Keyval As Byte 'the extended value of the key that has just been pressed
Dim Keycount As Byte 'records how may times the key has been pressed
Dim Keychar As String * 1 'the character gotten from the keypad
Dim Intcount As Word
Dim Keypress As Bit
'Initialise Variables
Intcount = 0
Keychar = "r"
Keypress = 0 'no key down

671

'--
'Program starts here
Reset Porta.0 'led on
Cls
Lcd "ATMEGA64-16Ai"
Lowerline
Lcd "keypad reader:"
Locate 3 , 1
Lcd "I_ctr="
Locate 3 , 10
Lcd "code="
Locate 4 , 1
Lcd "col="
Locate 4 , 10
Lcd "row="
Enable Int1
Do
 Locate 3 , 7
 Lcd Intcount : Lcd " "
 Locate 3 , 15
 Lcd Keycode : Lcd " "
 Locate 4 , 5
 Lcd Keycol : Lcd " "
 Locate 4 , 14
 Lcd Keyrow : Lcd " "
 Locate 2 , 16
 Lcd Keychar
 Toggle Porta.6
 Waitms Timedelay
 Toggle Porta.7
 Waitms Timedelay
Loop
End 'end program

672

'--
' Interrupts
Int1_int:
 Toggle Porta.0 'indicate a key press
 Incr Intcount 'tally of key presses
 Keypress = 1 'flag a key down
 Keycol = Keypad_in
 'swap port upper nibble to input, lower to output
 Keypad_dir = &B11110000
 Keypad_out = &B00001111
 Waitms 1 ' port needs a little time
 Keyrow = Keypad_in 'read the col is zero
 'set port back to original state
 Keypad_dir = &B00001111
 Keypad_out = &B11110000
 'make keycode from port pins read
 Shift Keycol , Right , 4
 Select Case Keycol
 Case 7 : Keycode = 0
 Case 11 : Keycode = 4
 Case 13 : Keycode = 8
 Case 14 : Keycode = 12
 Case Else : Keycode = 99
 End Select
 'make final keycode from port pins read
 Select Case Keyrow
 Case 7 : Keycode = Keycode + 0
 Case 11 : Keycode = Keycode + 1
 Case 13 : Keycode = Keycode + 2
 Case 14 : Keycode = Keycode + 3
 Case Else : Keycode = Keycode + 99
 End Select
 'illegal keycode from bounce effects
 'If Keycode > 15 Then Keycode = 16
 Keychar = Lookupstr(keycode , Keycodes)
 'the changing of ports causes interrupts to be flagged a second time
 'however interrupts are not processed during an intr routine
 ' because the global flag is halted (CLI)
 'so we must clear the second interrupt so that we do not enter here again
 'this took a few hours to figure this one out!!!
 'this line clears any pending interrupts before the routine exits
 Eifr = 2
Return
'--
Keycodes:
Data "1" , "4" , "7" , "s" , "2" , "5" , "8" , "0" ,
Data "3" , "6" , "9" , "h" , "A" , "B" , "C" , "D" , "?"

673

47.3 Improving the HT12 radio system by using interrupts

Earlier a radio system was described that used the HT12E and HT12D ICs. The receiver side of the
system used a polling type design, where the program regularly checked the VT pin from the HT12D to
see if data was present.

It would be useful in some
situations to have an interrupt
driven design, so that a
program could be doing other
functions and only respond
when something actually
happens.

In this program the data is
stored when it arrives and the
main program loop is free to
check it when it wants.

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 ' internal clock

$regfile = "m16def.dat" ' ATMEGA16

'--

' Hardware Setups

' setup direction of all ports

Config Porta = Output '4 leds on PortA.0to A.3

Config Portb = Input ' Valid data is input on this port

Config Portc = Output ' Used for LED's and LCD

Config Portd = Input ' PortD.2 is used for Data Valid input

'setup LCD

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 =

Portc.7 , E = Portc.3 , Rs = Portc.2

Config Lcd = 40 * 2

'setup Interrupts

On Int0 Get_data

Enable Int0

Config Int0 = Rising

Enable Interrupts

' Hardware Aliases

Ht12d_dv Alias Pind.2

' Turn off LED's on PortC.0 & PortC.1

'--

' Declare Constants

Const True = 1

Const False = 0

' Declare Variables

Dim Rcvd_value As Byte

Dim Data_rcvd_flag As Bit

Dim Data_rcvd_count As Byte

Dim Message As String * 81

Normal program flow
read data from HT12D

return to normal process

Start

interrupt on receive

674

' Initialise Variables

'--

' Program starts here

Cls

Cursor Off

Locate 1 , 1

Lcd "HT12D interrupt test program"

Do

 'do other program stuff here

 If Data_rcvd_flag = True Then 'do something with the new data

 Porta = Not Rcvd_value 'display on leds

 Message = Lookupstr(rcvd_value , Messages)

 Cls

 Lcd Message

 Data_rcvd_flag = False 'remove flag

 End If

Loop '

End

'--

'interrupt routine

Get_data:

 Data_rcvd_flag = True

 Rcvd_value = Pinb And &H0F ' get value from lower nibble PortB

 While Ht12d_dv = True ' wait until data no longer valid

 Wend 'so that the program only actions data

once

Return

'-- ----------------------------------

Messages:

Data "The only time success comes before work is in the dictionary!!"

Data " Ma Te Mahi Ka Ora Fulfillment comes through hard

work!"

Data "good decisions come from experience experience comes from bad

decisions"

Data " the trouble with normal is it only gets worse!"

Data " What you do speaks so loud that I cannot hear what you are

saying"

Data "Never confuse motion with action"

Data "The only thing necessary for the triumph of evil is for good men to do

nothing"

Data "Ability is what you're capable of doing Attitude determines if you will do

it"

Data " The first will be last and the last will be first"

Data "If a blind person leads a blind person, both will end up in a ditch"

Data "10"

Data "11"

Data "12"

Data "13"

Data "14"

Data "15"

The limitation of this program is that it only stores one piece of data; and if new data arrives before it
has had an opportunity to process the first value, then the first value is lost. This program could do
with a buffer to remember received data, in fact a queue would be useful, where data arrives it is
stored at one end of the queue and it is processed from the other end . In computer programming
terms its called a First In First Out (FIFO) queue or buffer.

675

47.4 Magnetic Card Reader

The JSR-1250 is only a few dollars and can make the basis for a
neat project involving magnetic cards.

The card reader has 5V and ground/0V power supply pins as well as
5 interface pins. This is how the interface pins were connected (each
pin also had a 4k7 pullup resistor connected to VCC).
RDD2 onto Pind.6 (data 2)
RCP2 onto Pind.2 - INT0 (clock pulse 2)
CPD onto Pind.3 - INT1 (card present detect)
RDD1 onto Pind.4 (data 1)
RCP1 onto Pind.5 (clock pulse 1)

47.5 Card reader data structure

Before program code can be written it must be planned, AND before it can be planned the hardware
must be understood in fine detail.
A card was swiped upwards through the reader and using a logic analyzer the data was captured.
Note the following:

 CPD is high when there is no data.

 When a card is swiped CPD goes low and remains low during the complete data send process.

 There are two sets of data (RDD1 And RDD2) and their respective clock signals (RCP1 and

RCP2).

We can use all this information when writing code to understand the incoming data.

676

47.6 Card reader data timing

There is still much more to understand. When writing program code to read the data from a magnetic
card reader it is important to understand exactly when the data is valid. This is a synchronous data
transfer process, which means that two signals are sent both clock and data, and we must know when
to read the data in relation to the level of the clock data.

The datasheet has this diagram in it and explains that the data should be read when the clock goes
from high to low (its negative edge).

In this screen capture from
the logic analyser it can be
seen that there is a gap of
around 15mS between CPD
going low and the data
starting.

677

47.7 Card reader data formats

Next we must know how the binary data (1’s and 0’s) needs to be put back into information we can use
(numbers such as credit card numbers!). There are many sources of information on the internet about
magnetic card readers, perhaps one of the best is http://stripesnoop.sourceforge.net/devel/index.html.
On this site are documents that explain in quite a lot of detail the number of tracks of data on a card
and its format. There are two tracks available from our reader, 1 and 2.
Here is the track 2 data format.
It has a start sentinel (signal), then 19 digit code, then... as per the diagram

 Further research on the web leads to the format that the data is in. The data is sent 5 bits at a time, 4
data bits and 1 parity bit (error checking). The data comes in LSB (least significant bit) first. The
number 3 in binary is 0011; this means that a 1 is sent then another 1 then a 0 then another 0; and
then the parity bit is sent.

47.8 Understanding interrupts in Bascom- trialling

The tricky thing with Bascom and interrupts is that Bascom does not give us complete control over how
the interrupts are configured, and there are a number of features in the AVR that we can make use of.
In the AVR we can actually configure the interrupts to be negative edge, positive edge, both edge or
low level detect.

Bascom configures the interrupt to be level detected, so interrupts occur when the pin goes low and
continue to occur while it is low. In this program an edge rather than a level detection is better. We only
want one interrupt to occur on the edges.

Here is how the interrupts are configured by Bascom (level detection).

On Int1 Int1_cpd 'card present detect

Enable Int1 'enable card detect interrupt

Enable Interrupts 'enable micro to process all interrupts

However this is not what we need; to figure out the settings the datasheet was downloaded and the
sections on interrupts and external interrupts were read. The interrupts are controlled by registers
(memory locations which directly control hardware) within the micro, so a program was then written to
display all of the register values involved with interrupts.

Lcdat 1 , 1 , "8535 Interrupt Testing"

Lcdat 2 , 1 , Sreg

Lcdat 3 , 1 , Gicr

Lcdat 4 , 1 , Gifr

Lcdat 5 , 1 , Mcucsr

Lcdat 6 , 1 , Mcucr

678

Here are the results of displaying the values of the registers.

Register Value Meaning

SREG
Status
Reg

&B10000010 This register is the status register for the whole AVR, we are only
interested in bit 7, which is the global interrupt flag. If we set this to 1
then any enabled interrupt will occur, if it is reset to 0 then any
enabled interrupts will not occur (hence the name global interrupt
flag). We can set it by using any one of the following commands in
Bascom

enable interrupts or SEI or set SREG.7

GICR
General
Interrupt
Control
Reg

&B10000000 This register is used to control the external interrupts.
We can disable INT0 using the following commands

disable INT0 or RESET GICR.INT0
We can enable INT1 using the following commands

enable INT1 or SET GICR.INT1

GIFR
General
Interrupt
Flag Reg

&B00100000 We don’t set or reset any of the bits in this register

MCUCSR
MCU
Control
Status
Reg

&B00000011 We don’t set or reset any of the bits in this register

MCUCR
MCU
Control
Reg

&B00000000 The type of interrupt is set with this register, we are really interested
in this.

When we write in Bascom ‘’On INT1 int1_cpd’
Bascom configures 2 bits of this register, ISC11 and ISC10, and it
resets them to 0, meaning low level interrupt is configured.
We really want an interrupt on both the negative edge and positive
edge of this pin. So we write these 3 lines

On INT1 int1_cpd ‘Bascom sets up the interrupts for us
Reset MCUCR.ISC11 ‘we modify the type of interrupt
Set MCUCR.ISC10

When we write in Bascom ‘’On INT0 int0_rcp2’
Bascom configures 2 bits of this register, ISC01 and ISC00, and it
resets them to 0, meaning low level interrupt is configured.
We really want a negative (falling) edge interrupt on the clock so we
write these 3 lines

On INT0 int0_rcp2 ‘Bascom sets up the interrupts for us
Set MCUCR.ISC01 ‘we modify the type of interrupt
Reset MCUCR.ISC00

After doing this MCUCR = &B00000110

679

Initially the CPD (card present) interrupt is enabled and the clock (RCP) interrupt is disabled. When a
card is present (CPD goes low) the interrupt routine is used to enable the clock interrupt. When the
clock goes low we will read the data.

An initial program to test the ideas was created. This program detects the positive and negative edges
on the CPD (card present detect) and counts them, it then counts the number of clock pulses.
'--

' File Name: MagReaderV1a.bas

' Program Description:

' uses interrupts to read the data from a magnetic card

' Hardware Features:

' 128x64 GLCD

' JSR-1250 magnetic card reader

' waits for int0 (CPD) then enables int1(RCP)

' every swipe the number of clocks is counted

'--

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m8535.dat" ' specify the used micro

$crystal = 8000000 ' used crystal frequency

$lib "glcdKS108-192x64.lib" ' library of display routines

'--

' Hardware Setups

Config Portd = Input 'Mag card

Config Portc = Input 'switches

'Configure KS0108 GLCD interface

Config Graphlcd = 192 * 64sed , Dataport = Portb , Controlport = Porta , Ce = 3 , Ce2 = 5 , Cd = 0 , Rd = 1 ,

Reset = 4 , Enable = 2 , Ce3 = 6

'interrupt setups - NOTE the special configs

On Int1 Int1_cpd 'card present detect

Reset Mcucr.isc11 'change to both edges interrupt detect

Set Mcucr.isc10

On Int0 Int0_rcp2 'read clock pulse

Set Mcucr.isc01 'change to negative edge detect

Reset Mcucr.isc00

Disable Int0 'disable clock pulse interrupt

Enable Int1 'enable card detect interrupt

Enable Interrupts 'enable micro to process all interrupts

'Hardware Aliases

Rdd2 Alias Pind.6 '&B00000000

Rcp2 Alias Pind.2 'int0

Cpd Alias Pind.3 'int1

Rdd1 Alias Pind.4

Rcp1 Alias Pind.5

' Declare Variables

Dim Positive_edge As Byte

Dim Negative_edge As Byte

Dim Clock_count As Word

' Program starts here

Cls

Setfont Font 8x8 'specify the small font

Lcdat 1 , 1 , "Magnetic card reader" 'the rows are from 1 to 8

Do

 Lcdat 2 , 1 , Positive_edge

 Lcdat 3 , 1 , Negative_edge

 Lcdat 4 , 1 , Clock_count

Loop

End 'end program

'the font and graphic files must be in the same directory as the .bas file

$include "font8x8.font"

'--

'interrupts

'card detect - both edges generate an interrupt

Int1_cpd:

 If Cpd = 0 Then 'while low we want to collect data

 Incr Positive_edge 'keep track of the negative edges

 Enable Int0 'allow clock interrupts

 Clock_count = 0 'start clock counter from 0

 Else

 Incr Negative_edge 'keep track of positive edges

 Disable Int0 'finidhed so stop data collection

 End If '

Return

'clock - negative edge interrupt

Int0_rcp2:

 Incr Clock_count 'keep track of number of clocks per swipe

Return

680

47.9 Planning the program

In this first example it was decided that a single interrupt would be sufficient and it would be used to
capture the CPD. In the interrupt routine program code has been written that reads data from the card
reader.

It should be noted here that it is considered bad practice to put lengthy code inside an interrupt routine.
It can cause the micro to crash if interrupts occur during the processing of an interrupt and further
interrupts occur during that interrupt. The micro has to keep track of all interrupts and has only a finite
amount of memory space to do this; too many interrupts inside others and your progam easily crashes.

If this is understood and the rest of the program is written with this in mind then it will be ok; but in a big
project where multiple people are writing different parts of a program this would be bad to do.

'--

' Title Block

' Author: B.Collis

' Date: April 2011

' File Name: MagReaderV3a.bas

'--

' Program Description:

' uses interrupts to read the data from a magnetic card

' Hardware Features:

' 128x64 GLCD

' JSR-1250 magnetic card reader

' 3a - when card is swipped, int1 occurs

' all data is read inside the int routine

'--

' Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m8535.dat" ' specify the used micro

$crystal = 8000000 ' used crystal frequency

$lib "glcdKS108-192x64.lib" ' library of display routines

'--

' Hardware Setups

Config Portd = Input 'Mag card

Config Portc = Input 'switches

Set Portc.1 'activate internal pullup resistor

Set Portc.2 'activate internal pullup resistor

681

Set Portc.3 'activate internal pullup resistor

Set Portc.4 'activate internal pullup resistor

Config Portc.0 = Output 'led

Config Portd.7 = Output 'led

'Configure KS0108 GLCD interface

Config Graphlcd = 192 * 64sed , Dataport = Portb , Controlport = Porta , Ce = 3 , Ce2 = 5 , Cd = 0 , Rd = 1 ,

Reset = 4 , Enable = 2 , Ce3 = 6

'interrupt setups - NOTE the special configs

On Int1 Int1_cpd 'card present detect

'bascom configures the int to level detect,

' so ints are continuously generated while int1 is low

' we want neg edge int only so set the appropriate bits

Set Mcucr.isc11 'change to negative edge detect

Reset Mcucr.isc10

Enable Int1

Enable Interrupts

'Hardware Aliases

'switches

Yel_sw Alias Pinc.1

Blk_sw Alias Pinc.2

Blu_sw Alias Pinc.3

Red_sw Alias Pinc.4

Or_led Alias Portc.0

Yel_led Alias Portd.7

Reset Yel_led

Reset Or_led

'magnetic card reader

Rdd2 Alias Pind.6 'data 2

Rcp2 Alias Pind.2 'clock pulse2

Cpd Alias Pind.3 'int1 -card present detect

Rdd1 Alias Pind.4

Rcp1 Alias Pind.5

'--

'constants

Const Fl_nocpd = 1 'no card detected

Const Fl_cpd = 2 'card detected

Const Fl_newcard = 3 'new card info to process

' Declare Variables

Dim Flag As Byte

Dim Temp As Byte

Dim Tempstr As String * 30

Dim Carddata As String * 52

Dim Bit_counter As Byte

Dim Count As Byte

Dim Byte_counter As Byte

' Initialise Variables

Flag = Fl_nocpd

'--

' Program starts here

Cls

Setfont Font 5x5 'specify the small font

Lcdat 1 , 1 , "Mag card reader Ver2a" '

Lcdat 2 , 1 , "Swipe a card upwards"

Do

 If Flag = Fl_newcard Then 'do something with the new info

 Tempstr = Left(carddata , 30)

 Lcdat 4 , 1 , Tempstr

 Tempstr = Mid(carddata , 30 , 20)

 Lcdat 5 , 1 , Tempstr

 Flag = Fl_nocpd 'no card detected

 End If

 'rest of program goes here

Loop

End 'end program

'--

'the font and graphic files must be in the same directory as the .bas file

$include "font5x5.font"

'--

'interrupts

'card detect - negative edge generates an interrupt

'--

682

'this routine is called when there is a CPD interrupt(card present)

' with no card swiped the flag is Fl_nocpd

' when CPD goes low INT1 happens

' flag is set to Fl_cpd, at this time RDD is high

' wait for first neg edge of RDD

' process edge

' wait for both new neg edge and CPD

' if CPD exit , if neg edge process new data bit

' processing data:

' after 5 data bits, a new byte is created with the data in it

' data comes in the form of 4 inverted bits (LSB first) + parity

Int1_cpd:

 If Cpd = 0 Then 'neg edge,card detected

 Flag = Fl_cpd 'reading a card

 Set Or_led 'show an indicator led

 Carddata = "" 'delete any previously read card data

 Bit_counter = 0 'reset bit counter

 Byte_counter = 1

 Do 'if cpd=1 then start reading data

 'wait for data to start

 Do

 If Cpd = 1 Then Exit Do 'card finished so dont get stuck

 Loop Until Rdd2 = 0

 'process all incoming data until CPD goes high at end of read

 Do

 Set Yel_led

 'wait for clock to go low

 Do

 If Cpd = 1 Then Exit Do 'card finished so dont get stuck

 Loop Until Rcp2 = 0

 'process a single bit

 If Bit_counter < 4 Then 'only store bits 0 to 3

 Temp.bit_counter = Not Rdd2 'get value of input, negate and store

 End If

 If Bit_counter = 4 Then '5 bits completed

 Bit_counter = 255 '255 because we incr it after this to 0

 'add code to check parity??? - not really necessary

 Temp = Temp + 48 'convert to asci code

 Carddata = Carddata + Chr(temp) 'store the data

 Temp = 0 'reset for next 5 bit read

 Incr Byte_counter 'next store location

 End If

 Incr Bit_counter

 'wait for RCP to return high

 Do

 If Cpd = 1 Then Exit Do 'card finished so dont get stuck

 Loop Until Rcp2 = 1 'clock has returned high

 Loop Until Cpd = 1

 Reset Yel_led

 Loop Until Cpd = 1 'will be set by int routine

 Flag = Fl_newcard

 Reset Or_led

 End If

Return

683

47.10 Pin Change Interrupts PCINT0-31

Each modern AVR microcontroller has a number of other external interrupts known as Pin Change
Interrupts (PCI). Here the interrupt is triggered when the pin changes, so that means either from 1 to 0
ot 0 to 1.

In the datasheet for each micro they are labelled.

There is not an interrupt for each pin, they are arranged into groups of 8 which share one interrupt. So
there are only 4 pin change interrupts PCINT0, PCINT1, PCINT2, PCINT3 in the ATMEGA644.
Try not to confuse PCINT0 the interrupt pin PortA.0 with PCINT0 the interrupt!!!

In our program we will make use of 5 switches on pins B.0 thru B.4 (PCINT8 thru PCINT12) which
uses PCINT1 (pin change interrupt 1)

So before we use any of the interrupts we need to tell the micro which of the 8 pins on PORTb we
want to trigger PCINT1. We don’t want any changes on pinb.5, 8.6 or b.7 to cause interruts, so we
mask them out using PCMSK1.
Pcmsk1 = &B00011111 'only use pcint8-pcint12 (pinb.0-pinb.4)

On Pcint1 Isr_pcint1 'jump here when one of the pins is changed

Enable Pcint1 'must enable pcint1

Enable Interrupts 'global interupt flag

In the ISR (interrupt dervice routine) we need to figure out which of the 5 pins actually caused the interrupt and then take
the right acton.

Also note that these are pinchange interrupts so if you press a switch you get an interrupt and when you release the
swiutch you get another interrupt; and all the switch bounces inbetwen cause more interrupts.

684

'PCINT test program

$regfile = "m644def.dat"

$crystal = 8000000

Config Lcdpin=pin , Db4 = PORTC.2 , Db5 = PORTC.3 , Db6 = PORTC.4 , Db7 = PORTC.5 , E = PORTC.1 , Rs = PORTC.0

Config Lcd = 20 * 4

Config Portb = Input

Set Portb.0 'pullup resistor on PCINT8

Set Portb.1 'pullup resistor on PCINT9

Set Portb.2 'pullup resistor on PCINT10

Set Portb.3 'pullup resistor on PCINT11

Set Portb.4 'pullup resistor on PCINT12

'With pcmsk you activiate which pins will respond to a change on the pin

'When you write a 1, the change in logic level will be detected.

Pcmsk1 = &B00011111 'only use pcint8-pcint12 (pinb.0-pinb.4)

On Pcint1 Isr_pcint1 'jump here when one of the pins is changed

Enable Pcint1 'must enable pcint1

Enable Interrupts 'global interupt flag

Dim count As Byte

Cls

Cursor Off

Lcd "PCINT test"

Do

 Locate 2 , 1

 Lcd "decimal=" ; Count ; " "

 Locate 3 , 1

 Lcd "binary =" ; Bin(count)

 Locate 4 , 1

 Lcd "hex =" ; Hex(count)

Loop

End

Isr_pcint1:

 'to find out which pin changed we test each pin

 Waitms 20 'debounce cheap switches

 If Pinb.0 = 0 Then

 Decr Count

 Do

 Loop Until Pinb.0 = 1

 End If

 If Pinb.1 = 0 Then

 Incr Count

 Do

 Loop Until Pinb.1 = 1

 End If

 If Pinb.2 = 0 Then

 Count = Count * 2

 Do

 Loop Until Pinb.2 = 1

 End If

 If Pinb.3 = 0 Then

 Count = Count / 2

 Do

 Loop Until Pinb.3 = 1

 End If

 If Pinb.4 = 0 Then

 Count = Count * 4

 Do

 Loop Until Pinb.4 = 1

 End If

 Waitms 20

Return

To overcome the fact we get an interrupt on switch press and another on switch release in this
program there is a do-loop-until in each switch press that waits for the pin to be released before exiting
the ISR. And to overcome switch bounce there is a short delay at the beginning and end.

685

48 Timer/Counters
The ATMega48/8535/16/32microcontroller shave a number of harware registers that have special
functions. Three of these registers are Timer0, Timer1, and Timer2.

Timer0 is 8 bits so can count from 0 to 255
Timer1 is 16 bits so can count from 0 to 65535
Timer2 is 8 bits so can count from 0 to 255

Here is a block diagram of some of Timer1’s features – it is possible to set very accurate output
timings by varying the prescale and the preload values (of you use an external crystal oscillator rather
then the internal RC, resistor capacitor, one)

The timer/counters can be written to and read from just like ordinary RAM but they also have so much
more to offer a designer,

 Timers can count automatically; you just give the microcontroller the command to start, enable
timer1 and enable interrupts or to stop i.e. disable timer1.

 You don’t even have to keep track of the count in your program; when a timer overflows it will
call an interrupt subroutine for you via the command on ovf1 tim1_isr (on overflow of timer1
do the subroutine called tim1_isr), an overflow occurs when a variable goes from its maximum
value (65535) back to 0.

 The rate of counting can be from the microcontrollers internal oscillator, i.e. timer1 = timer, or it
can count pulses from an external pin i.e. timer1 = counter (which is pin B.1 for timer1).

 When counting from the internal oscillator it will count at the R-C/Crystal rate or at a slower
rate. This can be the osciallator frequency, the oscillator/8 or /64 or /256 or /1024, in our
program prescale = 256 (which is 8,000,000/256 = 31,250 counts per second)

 The timer doesn’t have to start counting from 0 it can be preloaded to start from any number
less than 65535 i.e. timer1 = 34286, so that we can program accurate time periods.

686

There are over 60 pages in the datasheet describing all the neat things timers can do!

48.1 Timer2 (16 bit) Program

Timer1 is setup to give 1 second interrupts, every second the led will toggle.

'LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'Timer 1
' preload = 65536 - 8000000 / (prescale * intinterval) = 34286 (1sec interrupts)
' there are calculators on the web to help with this sort of thing
Config Timer1 = Counter , Prescale = 256
On Ovf1 Timer1_isr
Const Preload_value = 34286
Timer1 = Preload_value 'reload timer1
Enable Timer1 'enable timer 1 interrupt
Enable Interrupts 'allow global interrupts to occur

Grn_led Alias Portb.5

Dim Count As Word
'---
'progam starts here

Cls 'clears LCD display
Cursor Off 'no cursor
Lcd "timer testing"
Do
 Locate 2 , 10
 Lcd Count
Loop
End 'end program

'---
Timer1_isr:
 Timer1 = Preload_value 'reload timer1
 Toggle Grn_led 'if LED is off turn it on, if it is on turn it off
 Incr Count
Return

687

48.2 Timer0 (8bit) Program

This program toggles the led 100 times per second, too fast to see, but the count is usable. You could
make a stop watch using this.

'LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'Timer 1
' preload = 255 - 8000000 / (prescale * intinterval) = 177 (1millisec interrupts)
' there are calculators on the web to help with this sort of thing
Config Timer0 = Counter , Prescale = 1024
On Ovf0 Timer0_isr
Const Preload_value = 177
Timer1 = Preload_value 'reload timer1
Enable Timer0 'enable timer 1 interrupt
Enable Interrupts 'allow global interrupts to occur

' hardware aliases
Grn_led Alias Portb.5

Dim millsecs As byte

'---
'progam starts here

Cls 'clears LCD display
Cursor Off 'no cursor
Lcd "timer testing"
Do
 Locate 2 , 10
 Lcd millisecs
Loop
End 'end program

'---
Timer0_isr:
 Timer0 = Preload_value 'reload timer1
 Toggle Grn_led
 Incr millisecs
Return

It is really important to undertstand that the timer will reoccur at the rate you set it at, in this

program that is every 100mS. If the code in the timer routine takes more than 100mS
to execute then you have too much code in it and your micro will crash.

In the program above the displaying of the value millisecs is not in the interrupt routine it

is in the main code. The 3 lines of code in the interrupt routine can execute in less
than 1 microsecond in total. The actual program code for commands like ‘Locate 2

, 10’and ‘Lcd millisecs’ is long and very complex and they may take quite some time
to execute, you would have to know a lot about assembly language to figure out
exactly how long.

688

48.3 Accurate tones using a timer (Middle C)

' setup direction of all ports
Config Porta = Input '
Config Portb = Input
Config Portb.5 = Output '
Config Portb.6 = Output '
Config Portb.7 = Output '

'LCD
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'Timer 1
Config Timer1 = Counter , Prescale = 8
On Ovf1 Timer1_isr

Enable Timer1 'enable timer 1 interrupt
Enable Interrupts 'allow global interrupts to occur

' hardware aliases
Red_sw Alias Pinb.0
Yel_sw Alias Pinb.1
Grn_sw Alias Pinb.2
Blu_sw Alias Pinb.3
Wht_sw Alias Pinb.4

Yel_led Alias Portb.6
Red_led Alias Portb.7
Piezo Alias Portb.5 'could be a piezo or speaker+resitor or amplifier (LM386)

Dim Preload As Word
Preload = 63626 '261.78Hz-middle C
Timer1 = Preload 'reload timer1

Const Toneduration = 500

Do
 Enable Timer1 'restart the sound
 Waitms Toneduration
 Disable Timer1 ' stop the sound
 Reset Piezo 'make sure power to the output audio device is off
 Wait 5
Loop ' keep going forever
End
'--
'. Subroutines
Timer1_isr:
 Timer1 = Preload ' reload the counter (how long to wait for)
 Piezo = Not Piezo ' toggle piezo pin to make sound
Return

689

48.4 Timer1 Calculator Program

Using this program the calculations are easily done, simply enter a value into any of the yellow number
boxes and the rest of the values will be calculated automatically.
The actual frequency wanted was Middle C (261.78Hz), this means we need 523.56 interrupts per
second (2 interrupts per heterz of frequency)

Note that the microcontroller is working on
an internal R-C (resistor-capacitor) oscillator
and it is not very accurate.

In an experiment to get Middle C, the timer
was preloaded with a value of 63626 and
the following measurement was made on an
oscilloscope.
The period actually is 3784uSecs
(3.784mSecs), which is a frequency of
264.27Hz.

This error will vary from micro to micro and
even as the temperature increases and
decreases it can change. If you want more
accuracy use an external crystal.
(There are versions of the above program
for timer0 and timer2 as well).

690

48.5 Timer code to make a siren by varying the preload value

'--
' Hardware Setups
Config Timer1 = Timer , Prescale = 1
On Ovf1 Timer1_isr 'at end of count do this subroutine
Enable Interrupts 'global interrupt enable
' Hardware Aliases
Spkr Alias Portb.2 'speaker is on this port
'--
' Declare Constants
Const Countfrom = 55000 '
Const Countto = 64500
Const Countupstep = 100
Const Countdnstep = -100
Const Countdelay = 3
Const Delaybetween = 20
Const numbrSirens = 10
'--
' Declare Variables
Dim Count As Word 'use useful names to help program understanding
Dim Sirencount As Byte
Dim Timer1_preload As Word
Timer1 = Timer1_preload
'--
' Program starts here
Do
 Gosub Makesiren
 Wait 5
Loop
End
'--
' Subroutines
Makesiren:
 Enable Timer1 'sound on
 For Sirencount = 1 To numbrSirens 'how many siren cycles to do
 For Count = Countfrom To Countto Step Countupstep 'rising pitch
 Timer1_preload = Count 'pitch value
 Waitms Countdelay 'length of each tone
 Next
 For Count = Countto To Countfrom Step Countdnstep 'falling pitch
 Timer1_preload = Count 'pitch value
 Waitms Countdelay 'length of each tone
 Next
 Waitms Delaybetween 'delay between each cycle
 Next
 Disable Timer1 'sound off
Return
' Interrupt service routines (isr)
Timer1_isr:
 Timer1 = Timer1_preload'if the timer isnt preloaded it will start from 0 after an interrupt
 Toggle Spkr
Return

691

49 LED dot matrix scrolling display project – arrays and
timers

The display is an excellent opportunity to learn more about
arrays and timers

Before the display can be used though it must be understood.
Sometimes it is enough to understand how to use a device
without knowing everything about it (such as an LCD or LM35)
however in this case the display is not really that complex and
so must be thoroughly understood before it can be used. This
means knowing what is indside it.

 The LED dot matrix display is a grid of LEDs e.g. 35 LEDs arranged as 5x7,or 40 LEDs arranged as
5x8, or 64 LEDs arranged as 8x8.

A dot matrix of 40 LEDs does not hace 80 pins (2 pins per
LED) or even 41 pins (40 pins plus 1 common as with a 7
segment display) it needs onlt 13 pins (5+8) as the LEDs
are arranged in a grid and share anodes and cathodes

Here is the actual schematic for the Sharlight
CMD-3581300-W LED dotmatrix (13 is an
odd number so they gave it 14 pins and
joined 11 and 4 together)

The final step in understanding the device is the layout
of the pins; these are numbered like an IC.
Make sure the display is the correct way around.
Check it with the pins and slots around the edges.

692

Here is an LED matrix connected to an
ATMega8535. To get one particular LED to turn
on the cathode needs to have a low (0V) applied
and and the anode needs a high (5V). There are 5
resistors in series with the cathodes to reduce the
5V or too much current could flow and damage
the LEDs, initially these could be set at 470R.

Both pins to the LEDs have to be the correct
polarity for it to work/

PORT A PORTB

&B1101 1111 (only correct row low) &B0000 0010 (only correct column high)

Any other combination will have different effects

To turn on both these LEDs the following
sequence is required

PORT A PORTB

&B 1101 0111 (2 rows low) &B 0000 0010 (only correct column high)

693

To turn on a pattern all at once is not possible
, the columns have to to be scanned one at a
time. This is not difficult but requires some fast
processing.

Note that from a hardware point of view this
connection method does not really work the
best. When a column has 1 or 2 LEDs going
they are bright enough, however when there
are 5 leds going they can be a bit dim, So 1
column might have 2 bright LEDs and the next
5 dim ones! This because a port on a micro
can deliver about 20mA max- to 2 LEDS that
means 10mA each, but to 5 LEDs it means
4mA each. Removing the resistors will help
(as the leds are cycled rapidly they effectively
don’t get stressed. But the better solution is to
use driver transitors on each column.
Here is a portion of a program to display the

number of my classroom D7.
const w8=1
Do
 Porta = &B00000111 ' ***** (last 3 bits not used, so can be 0 or 1))
 Portb = &B10000000 'turn on column 1
 Waitms W8 'small delay so it flashes quickly
 Porta = &B01110111 ' * *
 Portb = &B01000000 'turn on column 2
 Waitms W8
 Porta = &B01110111 ' * *
 Portb = &B00100000 'turn on column 3
 Waitms W8
 Porta = &B10001111 ' ***
 Portb = &B00010000 'turn on column 4
 Waitms W8
 Porta = &B01110111 ' * *
 Portb = &B00001000 'turn on column 5
 Waitms W8
 Porta = &B10110111 ' * *
 Portb = &B00000100 'turn on column 6
 Waitms W8
 Porta = &B11010111 ' * *
 Portb = &B00000010 'turn on column 7
 Waitms W8
 Porta = &B11100111 ' **
 Portb = &B00000001 'turn on column 8
 Waitms W8
Loop

694

49.1 Scrolling text code

A better solution is to use the built in timer of the microcontroller to do the scannig. The advantage of
this is it de-compilcates your program code immensily by not having to worry about the timing for the
scanning of the columns. In effect it is simple multitasking behaviour.
'--
' 1. Title Block
' Author: B. Collis
' Date: 12 Dec 07
' File Name: dotmatrix_d7_timer_v1.bas
'--
' 2. Program Description:
' The text D7 is broken up into the following bytes
' *** ****
' * * *
' * * *
' * * *
' *** *
' as per the binary below (read it sideways)
' 00010000
' 01101110
' 01101101
' 01101011
' 00110111
' Hardware Features:
' 8 rows of dotmatrix LED connected to port B
' 5 cols of dotmatrix LED connected to port A
'Program Features
' Flashes so fast that the message appears to be there all the time
' works because of human persistence of vision
'--
' 3. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000 'the speed of the micro
$regfile = "m32def.dat" 'our micro, the ATMEGA32
'--
' 4. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'timer
Config Timer1 = Counter , Prescale = 1
On Ovf1 Timer1_isr
Enable Timer1 'enable timer 1 interrupt
Enable Interrupts 'global flag allows interrupts to occur
' 5. Hardware Aliases
Row Alias Porta 'digitdata on portA
Column Alias Portb 'B.0 to B.7
' 6. initialise ports so hardware starts correctly
Column = 2 'second column on at first
' 7. Declare Constants
Const Preload_value = 56500
'--
' 8 Declare Variables
Dim col_data(8) As Byte

695

Dim Col_count As Byte
' 9 Initialise Variables
Timer1 = Preload_value 'preload timer1
Col_count = 1
Col_data(1) = &B00000111 ' ***** (last 3 bits not used)
Col_data(2) = &B01110111 ' * *
Col_data(3) = &B01110111 ' * *
Col_data(4) = &B10001111 ' ***
Col_data(5) = &B01110111 ' * *
Col_data(6) = &B10110111 ' * *
Col_data(7) = &B11010111 ' * *
Col_data(8) = &B11100111 ' **
'--
' 10. Program starts here
Do
 'nothing here yet
Loop
End
'--
' 11. Subroutines
'subroutines
Timer1_isr:
 'puts the data in the array onto the rows, 1 column at a time
 'every time through turn on next column and get data for it
 Timer1 = Preload_value 'reload timer1
 Row = Col_data(col_count) 'put data onto row
 Rotate Column , Right 'turn on next column
 Incr Col_count 'increase to next column
 If Col_count = 9 Then Col_count = 1 'only have 8 columns
Return

The next stage on the program is to have a scrolling message.

First algortihm:

1. The message is stored in a string
2. The string is converted to an array of data, 6 bytes per letter (1 for a space) – this

is a large array
3. Get the first 8 pieces of data (1-8) and store them where the timer can access

them

 Wait a bit

 Get the next 8 pieces of data (2-9)

 And so on
The timers job is to scan the 8 columns with the data it is given
Note that there is no translation process for the ascii codes in the message string to
LED dotmatrix data, this must be created manually .

696

49.2 Scrolling text – algorithm design

697

49.3 Scrolling test - code

'--
' 1. Title Block
' Author: B.Collis
' Date: June 08
' File Name: DotmatrixV3
'--
' 2. Program Description:
' scrolls text across one 5x8 LED dot matrix
' uses timers, arrays and lookup tables
' 3. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000
$regfile = "m16def.dat"
$swstack = 40 '
$hwstack = 32
$framesize = 32

'--
' 4. Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portc = Output
Config Portd = Output
Config Pind.3 = Input
'configure the timer for the LED scanning
Config Timer1 = Counter , Prescale = 1
On Ovf1 Timer1_isr
Const Preload_value = 56500
Timer1 = Preload_value 'reload timer1
Enable Timer1 'enable timer 1 interrupt
Enable Interrupts 'allow global interrupts to occur

' 5. Hardware Aliases
Led Alias Portd.6
Col_diga Alias Porta 'A.0 to A.4
Col Alias Portc 'c.0 to c.7
' 6. initialise ports so hardware starts correctly
Col = 2 'second column on as first time around
 ' rotate makes it 1
'--
' 7. Declare Constants

'--
' 8. Declare Variables
Dim Message As String * 50 'max 50 characters
Dim Matrix(308) As Byte '6 times nmbr of chars + 8
Dim Count As Byte
Dim Singlechar As String * 1
Dim Char As Byte
Dim Mesg_char As Byte
Dim Temp As Byte
Dim M As Byte

698

Dim Col_count As Byte
Dim Matrix_ptr As Byte
Dim Table_ptr As Integer
Dim Speed As Byte
Dim Column(8) As Byte ' the 8 cols on the display
Dim Messagelength As Word
Dim Matrixlength As Word
Message = "abcd" 'USE @ FOR A SPACE
Messagelength = Len(message)
Matrixlength = Messagelength * 6
Matrixlength = Matrixlength + 8
Speed = 100

'--
' 10. Program starts here
'fill array with 1's - all leds off
Count = 1
For Count = 1 To 8
 Column(count) = &B11111
Next

'get each character from the message
'and create a larger array of 5 bytes of font data for each character
Matrix_ptr = 1
For Count = 1 To 8
 Matrix(matrix_ptr) = &B11111 'insert 8 spaces at
 Incr Matrix_ptr ' beginning of message
Next
For Mesg_char = 1 To Messagelength
 'for each character in the message
 Singlechar = Mid(message , Mesg_char , 1) ' get a char
 Table_ptr = Asc(singlechar) ' get ascii value for character
 Table_ptr = Table_ptr - 48 ' not using ascii codes below "0-zero"
 Table_ptr = Table_ptr * 5 ' get pointer to font data in the table
 'copy 5 consecutive bytes from the table into the matrix array
 For Count = 0 To 4 'for 5 bytes of the font
 Temp = Lookup(table_ptr , Table) 'get the font data
 Matrix(matrix_ptr) = Temp 'put it into the matrix table
 Incr Table_ptr
 Incr Matrix_ptr
 Next
 If Singlechar = ":" Then
 Matrix_ptr = Matrix_ptr - 4
 Matrixlength = Matrixlength - 4
 End If
 Matrix(matrix_ptr) = &B11111 'insert a space between
 Incr Matrix_ptr ' each character
Next
For Count = 1 To 8
 Matrix(matrix_ptr) = &B11111 'insert 8 spaces at
 Incr Matrix_ptr ' end of message
Next

699

'get 8 pieces of font at a time
Matrix_ptr = 1
Do
 'put the font into the display
 For Count = 1 To 10
 M = Matrix_ptr + Count
 Temp = Matrix(m)
 Column(count) = Temp
 Next
 Waitms Speed 'scroll delay
 Matrix_ptr = Matrix_ptr + 1 'increase by 1 to scroll 1 column at a time
 If Matrix_ptr > Matrixlength Then Matrix_ptr = 0
Loop

End

'--
' 11. Subroutines
'timer process
Timer1_isr:
 'puts the data in the column array out the port and onto the display
 '1 column at a time
 Timer1 = Preload_value 'reload timer1
 Col_diga = Column(col_count) 'put data onto column
 Rotate Col , Right 'turn on next column
 Incr Col_count 'increase to next column
 If Col_count = 9 Then Col_count = 1 'only have 8 columns
Return

End

'--
' data fir font
Table:
' ***
'* **
'* * *
'** *
' ***
'Zero:
Data &B10001 , &B00110 , &B01010 , &B01100 , &B10001
' *
' **
' *
' *
' *
'one
Data &B11111 , &B11101 , &B00000 , &B11111 , &B11111
'two
Data &B01101 , &B00110 , &B01010 , &B01101 , &B11111
'Three:
Data &B10110 , &B01110 , &B01100 , &B10010 , &B11111
'Four:

700

Data &B10111 , &B10011 , &B10101 , &B00000 , &B10111
'Five:
Data &B01000 , &B01010 , &B01010 , &B10110 , &B11111
'Six:
Data &B10001 , &B01010 , &B01010 , &B10111 , &B11111
'Seven:
Data &B01110 , &B10110 , &B11010 , &B11100 , &B11110
'Eight:
Data &B10101 , &B01010 , &B01010 , &B10101 , &B11111
'Nine:
Data &B11001 , &B01010 , &B01010 , &B10001 , &B11111
'Colon:
Data &B10101 , &B11111 , &B10101 , &B11111 , &B11111
'Semicolon:
Data &B11111 , &B01111 , &B10101 , &B11111 , &B11111
'Lessthan:
Data &B11111 , &B11011 , &B10101 , &B01110 , &B11111
'Equals:
Data &B11111 , &B10011 , &B10011 , &B10011 , &B11111
'Greaterthan:
Data &B11111 , &B01110 , &B10101 , &B11011 , &B11111
'Question:
Data &B11101 , &B11110 , &B01010 , &B11101 , &B11111
'At:@ BUT ACTUALLY USE FOR SPACE
Data &B11111 , &B11111 , &B11111 , &B11111 , &B11111
' ***
'* *
'*****
'* *
'* *
'A:
Data &B00001 , &B11010 , &B11010 , &B11010 , &B00001
'B:
Data &B00000 , &B01010 , &B01010 , &B01010 , &B10101
'C:
Data &B10001 , &B01110 , &B01110 , &B01110 , &B10101
'D:
Data &B00000 , &B01110 , &B01110 , &B01110 , &B10001
'E:
Data &B00000 , &B01010 , &B01010 , &B01010 , &B01110
'F:
Data &B00000 , &B11010 , &B11010 , &B11010 , &B11110
'G:
Data &B10001 , &B01110 , &B01110 , &B01010 , &B10011
'H:
Data &B00000 , &B11011 , &B11011 , &B11011 , &B00000
'I:
Data &B01110 , &B01110 , &B00000 , &B01110 , &B01110
'J:
Data &B10111 , &B01111 , &B01111 , &B01111 , &B10000
'K:
Data &B00000 , &B11011 , &B11011 , &B10101 , &B01110
'L:
Data &B00000 , &B01111 , &B01111 , &B01111 , &B01111

701

'M:
Data &B00000 , &B11101 , &B11011 , &B11101 , &B00000
'N:
Data &B00000 , &B11101 , &B11011 , &B10111 , &B00000
'O:
Data &B10001 , &B01110 , &B01110 , &B01110 , &B10001
'P:
Data &B00000 , &B11010 , &B11010 , &B11010 , &B111101
'Q:
Data &B10001 , &B01110 , &B01110 , &B00110 , &B00001
'R:
Data &B00000 , &B11010 , &B11010 , &B10010 , &B01101
'S:
Data &B01101 , &B01010 , &B01010 , &B01010 , &B10110
'T:
Data &B11110 , &B11110 , &B00000 , &B11110 , &B11110
'U:
Data &B10000 , &B01111 , &B01111 , &B01111 , &B10000
'V:
Data &B11000 , &B10111 , &B01111 , &B10111 , &B11000
'W:
Data &B00000 , &B10111 , &B11011 , &B10111 , &B00000
'X:
Data &B01110 , &B10101 , &B11011 , &B10101 , &B01110
'Y:
Data &B11110 , &B11101 , &B00011 , &B11101 , &B11110
'Z:
Data &B01110 , &B00110 , &B01010 , &B01100 , &B01110
'[:
Data &B11111 , &B00000 , &B01110 , &B01110 , &B11111
'\:
Data &B11110 , &B11101 , &B11011 , &B10111 , &B01111
'[:
Data &B11111 , &B01110 , &B01110 , &B00000 , &B11111
'^:
Data &B11111 , &B11101 , &B11110 , &B11101 , &B11111
'_:
Data &B01111 , &B01111 , &B01111 , &B01111 , &B01111
'\:
Data &B11110 , &B11101 , &B11111 , &B11111 , &B11111
' **
' *
' ***
'* *
' ***
'a:
Data &B10111 , &B01010 , &B01010 , &B00001 , &B11111
'b:
Data &B00000 , &B01011 , &B01011 , &B10111 , &B11111
'c:
Data &B10011 , &B01101 , &B01101 , &B11111 , &B11111
'd:
Data &B10111 , &B01011 , &B01011 , &B00000 , &B11111
' you can do the rest!!!

702

50 Medical machine project – timer implementation

 Situation:
The client had built a machine that measured certain aspects of air in
a persons lungs. It required the person to blow a minimum volume of
air through a straw into the machine.

The product was highly satisfactory however it had a limitation in that
if the person did not blow long or hard enough then deep air from the
lungs might not come out. In that case the device might give a false
reading. The client was an expert in analogue electronics and
mechanical design but needed some assistance with solving this
issue as they did not know enough about programming or
microcontrollers.

Alex and Victor two year12 students designed this product in 2006.

50.1 Block diagram

A small chamber with a pea sized ball in it (imagine a whistle) was inserted into the airline to measure
the air flow. There is an infrared led on one side and a photodetector on the other to measure the air
speed. As the user blows the ball rotatesin the chamber breaking the infrared path between the LED
and photodetector.
A second input to the circuit is a start blowing command, 2 outputs were required: good blow and bad
blow to interface to the existing circuitry.

703

50.2 Blower - state machine

This state machine was designed with the student to count the revolutions of the pea once the start
command was sensed.

It is important to get enough air for an accurate reading so the user must blow both hard and long
enough. The timer is used to count the number of pea rotations. Every 100mS the count must
increase by at least 10 or the user is deemed not to be blowing hard enough. If the blow lasts for 400
pea counts then it is a good blow. This would mean at least 4 seconds of blow.

The client also wanted 3 tries so that if the user gave a short blow they could try again.

The client also wanted field adjustments so that when programming in the field they could alter things
for different situations.

As the tacher I was a significant stakeholder in the project as well and I wanted significant input to the
project as I knew that in the future if the client wanted anything changed I was the one who would get
the call! I therefore made sure that the documentation was of a high standard.

When a person
starts to blow it
takes a short
period of time to
get up to full
speed. So
initially there is
a wait of 30
pulses from the
photo detector
before the
measurement
actually begins

704

50.3 Blower program code

'--
' 1. Title Block
' Author: Alex & Victor
' Date: 12 Sep 2006
' File Name: peactr_v3.bas
'--
' 2. Program Description:
' v3 changed pull up to pull down
' v2 implemented fail retries
' 3. Hardware features
' 2 photo diodes, one senses startcommand, other senses rotating pea
' 2 outputs, one for a pass, one for a fail
' 4. Software Features:
'--
' 5. Compiler Directives
$crystal = 1200000 ' internal clock
$regfile = "attiny13.dat" ' ATTINY13V
$hwstack = 20
$swstack = 8
$framesize = 16
'--
' 6. Hardware Setups
Config Portb = Output
Config Pinb.3 = Input
Config Pinb.4 = Input

Config Timer0 = Timer , Prescale = 1024
On Ovf0 Tim0_isr
Enable Interrupts
Dim Preload_value As Byte
Preload_value = 138

'--
'USER FIELD ADJUSTMENTS
Const Pass_time = 250 'milliseconds
Const Fail_time = 20 'seconds
Dim Tries As Byte
Tries = 3
Const P_limit = 10 '10=5 revs reqd every 100mS for a pass
'if too high then the person cannot blow hard enough to register
'if too low then they can blow too softly and give inaccurate readings
Const P_trigger = 30 'doesnot count the first 30 pulses (15 revs)
'allows the person to get blow to full speed
Const P_target = 400 '400=200 revs , the length of the blow

'--
'USER FIELD ADJUSTMENTS END
'--

705

'--
'flag values
Const Counting = 0
Const Good = 1
Const Bad = 2
'states
Const State_waitforstartcommand = 1
Const State_blowwait = 2
Const State_fullspeed = 3
Const State_badblow = 4
Const State_goodblow = 5
Const State_fullreset = 6

'alias
Bad_output Alias Portb.0
Good_output Alias Portb.1
Startblowing_input Alias Pinb.3
P_sensor Alias Pinb.4

Dim New_pcnt As Word
Dim Old_pcnt As Word
Dim Diff_pcnt As Byte
Dim Flag As Byte 'timer interrupt
Dim Pstate As Bit
Dim Try_count As Byte
Dim State As Byte

Tries = Tries - 1 'need to reduce for count to work

State = State_fullreset
Do

 Gosub Pcounting
 Select Case State

 Case State_waitforstartcommand : Gosub Startwait
 Case State_blowwait : Gosub Blowwait
 Case State_fullspeed : Gosub Fullspeed
 Case State_badblow : Gosub Badblow
 Case State_goodblow : Gosub Goodblow
 Case State_fullreset : Gosub Fullreset
 Case Else : Gosub Fullreset 'just in case

 End Select
Loop
End

This an alternative form of
state chart control to that
previoslt described. With
this code there are are no
actions that take place
between states.

706

'---
Fullreset:

 Try_count = 0
 Gosub Resetvar
 State = State_waitforstartcommand

Return

Resetvar:

 Good_output = 1
 Bad_output = 1
 New_pcnt = 0
 Old_pcnt = 0
 Flag = 0

Return

Startwait:

 If Startblowing_input = 0 Then
 State = State_blowwait
 New_pcnt = 0
 Old_pcnt = 0
 End If

Return

Blowwait:

 If New_pcnt = P_trigger Then
 State = State_fullspeed
 Enable Timer0 'start timing

 End If
Return

'Count the pulses when a change occurs
Pcounting:

 If P_sensor = Pstate Then 'check if sensor has changed
 Incr New_pcnt 'increase the count
 Pstate = Not Pstate 'change to other input value

 End If
Return

'Stay In This State until either bad enough or good enough
Fullspeed:

 If Flag = Bad Then State = State_badblow
 If New_pcnt = P_target Then State = State_goodblow

Return

707

Badblow:
 Disable Timer0 'stop timing
 Bad_output = 0 'signal to rest of machine
 Wait Fail_time
 Bad_output = 1
 Incr Try_count
 If Try_count > Tries Then

 State = 6 'reset machine
 Else

 State = State_blowwait 'have another go
 Gosub Resetvar 'reset counters etc

 End If
Return

Goodblow:

 Disable Timer0 'stop timing
 Good_output = 0 'signal to rest of machine
 Waitms Pass_time
 Good_output = 1
 State = State_fullreset 'reset machine

Return

'---
'timer
'Every 100ms
Tim0_isr:

 Timer0 = Preload_value
 Diff_pcnt = New_pcnt - Old_pcnt 'find out how many counts
 If Diff_pcnt < P_limit Then 'if not enough

 Flag = Bad
 Else 'or if enough

 Old_pcnt = New_pcnt 'remember current count
 End If

Return

708

51 Multiple 7-segment clock project – dual timer action
Some surplus 7-segment display boards were found on trademe and it was decided that my classroom
needed a fancy new clock.
The display digits are 70mm high x 48 mm wide and the whole board is 360mm in length

Not just any clock is required though; one of the problems in the classroom is that school periods can
be a little short for students and once they get going with practical work it is hard for them to stop when
the bell goes – well actually the truth is its my fault, I loose track of the time. So I needed a special
clock one that not only displayed the time but that kept track of how long there was left in a period and
could warn both the students and me that the period was rapidly coming to an end.

51.1 Understanding the complexities of the situation

The situation is much more complicated than initially might be thought because the school timetable is
actually a device of torture used by those in the know to torment humble teachers and students alike.

 Mondays and Tuesdays have the same bell times.

 Wednesday has its own because of a late start that day.

 Thursday and Friday have the same bell times but these are a different to Monday, Tuesday
and Wednesday (got it so far?)

 We actually only teach 5 periods in a day but on a Tuesday and Friday there are 6
periods($%$%#)

 This rotates every week so we teach periods 1 to 5 one week periods 2 to 6 the next and 3 to 1
etc etc

 In the first version of this project it was made worse by the fact that we use to have assemblies
on Friday which changed with the rotation as to who went and who didn’t so the times changed
for some Friday periods some weeks and not others. This has changed however but I keep a
copy of that version safely stored which means that next year should those in command change
again I can reimplement that trickery into the code

 I concluded early on that I needed to manage each day of the week individually!

 There is an emergency power stop in my room, so the clock must be battery backed up.

 The school periods should only be displayed during school weeks, of which there are about 36
each year. Weekends and school holidays only the time should display.

 Because the bell times are so different showing just the the time itself is meaningless, the clock
needs to show how many minutes are left until the next bell.

 There should be an extra message that happens 5 minutes before the bell goes to remind
people to cleanup

 My classroom is shared by another teacher once per day, the clock should mean something to
that person too!

A messge will rotate around the 7 digits that will look like:
“ 10-37 3-1 P1-Yr10 4T0G0 CLEANUP ”
10-37 is the time, then 3-1 the rotation (if a Tuesday or Friday), I always get asked this by students so
it was good to see it. P1-Yr10 who is in the class at the moment, this is really redundant information
because both the students and I know who is there but it is important in that it clarifies to all who see
the clock that it is correct in its operation. 4T0G0 how many minutes are left till the bell and finally the
CLEANUP message if it is less than 6 minutes to go in the period.

709

51.2 Hardware understanding:

There are 7 seven segment diplays on the PCB with a nice connector, each segment has 4 LEDs and
the decimal point has 2 LEDs. This makes them very bright and suitable for the classroom.

The problem with the dot matrix introductory scrolling text
project was the issue of brightness of the LEDs, this was
resolved by developing a circuit with driver transistors.
Amongst my component stock pile I had some driver ICs
both NPN (ULN2803) and PNP (UDN2580).Both have 8
transistors each, are Darlington types so are high gain and
good for switching medium power.

710

51.3 Classroom clock – block diagram

This is the final system block diagram for the classroom clock it shows the connections for the seven
7-segment displays to the microcontroller (j ust 2 digits and 2 segments are shown in the diagram to
reduce complexity).

 As well as the 7seg displays the other interfaces that were added as the project developed have been
included:

 RTC (real time clock)

 Jumper (to select normal/settings modes)

 Blue flashing light (with transistor and relay to drive it)

 Keypad

711

51.4 Classroom clock - schematic

When the schematic was initially developed it was not known exactly what interfaces would be needed
for the clock, so a board that could be added to later was designed.

51.5 Classroom clock - PCB layout

This layout shows the extra breadboarding area available for other circuits (such as the RTC etc)
which can be added later.

712

51.6 Relay Circuit Example

A flashing light was needed for the clock to act as a warning that the end
of the period was approaching.
A Jaycar blue mini strobe was purchased. It uses a xenon tube, is real
bright, runs off 12V, draws 180mA and flashes at a rate of 90 per minute.

As the light requires 180mA to work it cannot be run straight from a
microcontroller port pin as they can only provide 20mA. So some
amplifier device was needed.

The light could be run from a transistor or fet, however if I wanted to change it for some other light in
the future then I might have to change the transistor as well. So I decided to make the device as
general purpose as possible and add a relay circuit that would provide more flexibility. A relay is also
an isolation device, the input and output circuits are not electrically connected, so a high voltage power
supplyor the light cannot get backinto the Microcontroller.

Relays come in all shapes and sizes and current and voltage
ratings, they are however fairly standard in theory. There are two
types today electro-mechanical and solid-state, this theory is
about the electro mechanical type.

A relay consists of 2 parts a coil and a set of contacts.
Through the centre of the coil is a metal bar that moves when
power is applied to the coil. Attached to the metal bar are switch
contacts that change connections when the bar moves. In the
diagram when power is applied to the coil, the input will change
from being connected to out1 to out2. These contacts are
sometimes known as NC- normally closed and normally open.

For this project an OKO K51A05 was on hand so I found
out the connection details for it. If you don’t have a data
sheet then use a multimeter to help you. Measure the
resistance between all the different pins on the relay, the
coil will have a fixed resistance such as 1000 ohms or
less. The NC contacts will be 0 and the NO contact will
have no connection to any other contacts. Once you
have identified the coils apply voltage to the coil, start
with a low voltage 5V, if you hear it click then you have
the right voltage, if you don’t increase it. Some relays
work off 5V some off 12V some off 24V, and others all in
between.

 It’s a good idea to know the current that it draws as well
so a bench PSU is useful.

713

The K51A05 part number on the device led to the datsheet on the internet,
The connection details are in the datsheet.

The part number or what ever else is written on the relay may give clues as to the ratings of the
switching contacts . In this case the datasheet gives all the details

714

The interesting specifications are:

 Contact ratings: 1A at 24VDC (we are switch a 12V strobe light that requires 180mA)

 Coil draws 150mW power, so at 5V that’s 0.03mA (P=V*I, so I = P/V)

 It needs at least 4V to pickup or close the contacts

 The contacts will stay closed (drop out) unitl the voltage goes below 0.5V.

 The current is 29.9ma (confirms our power calculation above)

In this case it seems that we cannot drive our relay from the microcontroller directly as it needs 30mA
and a micro pin can only give 20mA, so we need to a firststage of amplification.
A transistor such as the BC547 could be useful.

 We are switching 12BV the BC547 can switch 45VDC so that is fine

 We need 30mA, the BC547 can switch 100mA so it will be ok.

 A transistor when it is fully on still has 0.3V across it, so that means 4.7V avaialble for the relay
(the relay requires 4V minimum so that is ok)

 The BC547 can dissipate (get rid of) no more than 500mW of power, we are drawing 30mA and
the voltage across the BC547 is 0.3V so P=V*I = 0.3 * 0.03 = 0.009W = 9mW, so that is ok too.

 The BC547B we have has a gain (hFE) for at least 200, that is the ratio of output current to
input current. We want 30mA out so input current = output current /gain = 0.03/200 =
0.00015A = 0.15mA from the microcontroller. Our micro can supply 20mA so that is no problem,
we just need a resistor to limit the current from the micro to the transistor, a 560R was chosen
as it was at hand, but we could calculate it. %v from the micro and 0.00015A , R = V/I = 33K.

715

This is the circuit developed. Now there is a very important component, that has not been discussed so
far, the diode across the relay coil. This diode is VERY IMPORTANT. I will explain why.

A coil of wire is known as an inductor and inductors have a very interesting electrical property, they
don’t like changes in current flow (just as a capacitor doesn’t like change in voltage across it, an
inductor doesn’t like change of current through it). This is due to the magnetic field that is associated
with current and wires.

So when the relay is powered up and we switch off the transistor, the magnetic field that is around the
coil slowly collapses back into the coil (its called back EMF), this however can have devastating effects
as the field causes electrons to flow in the coil which can have very high potential. In fact they could
have hundreds of volts potential, enough to kill our little 45V BC547B and 5V microcontroller very very
quickily. To protect the BC547 and the microcontroller we put a reverse polarised diode across the coil.
This shorts out that back EMF and protects our circuit.

716

51.7 Classroom clock – flowcharts

The settigs mode is entered by moving the jumper on pinb.3; when in this mode the display is used to
display various times/dates and set them using a keypad on portA.
' 0 - nothing pressed
' 1 - display time
' 2 - display date
' 3 - minute of day + secs
' 4 - weekday
' 5 - day of year
' 6 - week of year
' 7 - rotation

' 8 - increase day
' 9 - decreas day
' A - increase minutes
' B - decrease minutes
' C - increase hours
' D - decrease hours
' * - zero seconds
' # - increase month

convert time & date
bytes to strings

read time from rtc

add time to message string

 Monday Y
N

N school week?
Y

find out the rotation

find out which period it is

 Tuesday Y
N

 Wednesday Y
N

find out which period it is

 Thursday Y
N

find out the rotation

 Friday Y
N

find out which period it is

find out which period it is

find out which period it is

 last digit Y
N

go back to start

return

display it on the
correct digit

get a 7seg digit code

 <5min end of lesson Y
N

 during a period Y
N

led off

return

get 7 digits
starting at pointer

Convert ascii code
to 7seg led code

 end of message Y
N

toggle led

Timer1
message scroll

Timer0
digit scan

setup period times
pointer = start

incr pointer

Classroom
Timer

717

51.8 Classroom clock – program
'--

' 1. Title Block

' Author: B.Collis

' Date: JUL 2009

' File Name: ClassClock7SegVer4a.bas

'--

' 2. Program Description:

' routines to drive large seven segment display boards

'

' the display digits are on portd and the segments on portc

' the digits are interfaced via octal darlington drivers

' only 1 digit can actually be turned on at one time so the digits

' are scanned rapidly and the eye cannot detect the flashing

' the segments are in the order c d e b a f g 0

' so the letter b would turn on c,d,e,f,g its binary is &B1110011X

'

' two timers used, one for digit scanning, the other for scrolling the message

' because we want the period to be displayed there are lots of calcs

'

'v4 - changed to 2009 timetable

'v4A - changed to 2010 timetable ,ADDED TIME SETTING FEATURES

'TIME SETTING FEATURES - PUT JUMPER INTO OTHER POSITION

' 0 - nothing pressed

' 1 - display time

' 2 - display date

' 3 - minute of day + secs

' 4 - weekday

' 5 - day of year

' 6 - week of year

' 7 - rotation

' 8 - increase day

' 9 - decreas day

' A - increase minutes

' B - decrease minutes

' C - increase hours

' D - decrease hours

' * - zero seconds

' # - increase month

'look for ************** in the code

'these are the things that will have to be rewritten each year

'--

' 3. Compiler Directives (these tell Bascom things about our hardware)

$crystal = 8000000 'the crystal we are using

$regfile = "m32def.dat" ' the micro we are using

$hwstack = 126

$swstack = 40

$framesize = 120

'--

' 4. Hardware Setups

' setup direction of all ports

Config Porta = Input 'keypad

Config Portb = Output 'RTC, LED, JUMPER

Config Portc = Output 'segments

Config Portd = Output 'digits

'scan timer for 7seg digits

Config Timer0 = Timer , Prescale = 1024

Enable Timer0

Enable Interrupts

On Ovf0 Timer0_digitscan

'message scrolling timer

'timer1 is 16 Bit

Config Timer1 = Timer , Prescale = 1024

Enable Timer1

Enable Interrupts

On Ovf1 Timer1_messagescroll

718

'keypad on porta

Config Kbd = Porta

' config 2 wire I2C interface

'Config I2cdelay = 5 ' default slow mode

Config Sda = Portb.1

Config Scl = Portb.0

Config Clock = User 'dimensions time&date variables

Config Portb.2 = Output 'LED

Config Pinb.3 = Input 'jumper

Portb.3 = 1 'turn on internal pullup

' 7. Hardware Aliases

Segmentbus Alias Portc

Digitbus Alias Portd

Led Alias Portb.2

Jumper Alias Pinb.3

Bluelight Alias Portb.4

' 8. initialise ports so hardware starts correctly

Porta = &B11111111 '

'Portb = &B11111111 ' kills 1307

Portc = 0 'turns off segments

Portd = 0 'turns off digits

'--

' 9. Declare Constants

Const Scrolltime = 64500 'timer1 value to control scrolling speed

Const Scantimer = 235 'timer0 value to control scanning of digits

Const True = 1

Const False = 0

Const Mondayrc = 520 ' 8:40

Const Mondayp1 = 530 '8:50

Const Mondayp2 = 590 '9:50

Const Mondayint = 645 '10:45

Const Mondayp3 = 670 '11:10

Const Mondayp4 = 725 '12:05

Const Mondaylunch = 785 '13:05

Const Mondayssr = 825 '13:45

Const Mondayp5 = 855 '14:10

Const Mondayend = 910 '15:10

Const Tuesdayrc = 520 '8:40

Const Tuesdayp1 = 530 '8:50

Const Tuesdayp2 = 590 '9:50

Const Tuesdayint = 645 '10:45

Const Tuesdayp3 = 670 '11:10

Const Tuesdayp4 = 725 '12:05

Const Tuesdaylunch = 785 '13:05

Const Tuesdayssr = 825 '13:45

Const Tuesdayp5 = 855 '14:10

Const Tuesdayend = 910 '15:10

Const Wednesdaypd = 500 '8:20

Const Wednesdayp1 = 560 '9:20

Const Wednesdayp2 = 615 '10:15

Const Wednesdayint = 665 '11:05

Const Wednesdayp3 = 685 '11:25

Const Wednesdayp4 = 735 '12:15

Const Wednesdaylunch = 785 '13:05

Const Wednesdayssr = 830 '13:50

Const Wednesdayp5 = 855 '14:10

Const Wednesdayend = 910 '15:10

Const Thursdayrc = 520 '8:40

Const Thursdayp1 = 530 '8:50

Const Thursdayp2 = 590 '9:50

Const Thursdayint = 650 '10:50

Const Thursdayp3 = 675 '11:15

Const Thursdayp4 = 730 '12:10

Const Thursdaylunch = 785 '13:05

Const Thursdayssr = 830 '13:50

Const Thursdayp5 = 855 '14:10

Const Thursdayend = 910 '15:10

719

Const Fridayrc = 520 '8:40

Const Fridayp1 = 530 '8:50

Const Fridayp2 = 590 '9:50

Const Fridayint = 650 '10:50

Const Fridayp3 = 675 '11:15

Const Fridayp4 = 730 '12:10

Const Fridaylunch = 785 '13:05

Const Fridayssr = 830 '13:50

Const Fridayp5 = 855 '14:10

Const Fridayend = 910 '15:10

'--

'**************

Const Dayoffset = 4 '**************

'**************

Const Keydelay = 300

'--

' 10. Declare Variables

Dim Key As Byte

Key = 0

Dim K As Byte

Dim Digit(7) As Byte 'data for each digit

Dim Dig As Byte 'which digit is on

Dim Msgstr As String * 80 'the full text to be scrolled

Dim Msgptr As Byte 'points to digits

Dim Msglen As Byte

Dim Dispstr As String * 7 'string on display

Dim Ascii As String * 1 'single character in a string

Dim Timestr As String * 8 'my time string

Dim Secstr As String * 4 '-seconds

Dim Datestr As String * 7 'my date string

Dim Rotationstr As String * 8 'my date string

Dim Periodstr As String * 25 'school period name

Dim Period As Byte 'the rotated period

Dim Asci As Byte

Dim I As Byte

Dim Temp As Byte

Dim Minuteofday As Word 'stores minutes since midnight

Dim Minutesleft As Word 'minutes to go this period

Dim Days As Word 'days of year 1 to 365/6

Dim Weekday As Byte 'day of week mon=1

Dim Weekofyear As Word 'needsto be word!!

Dim Rotation As Byte

Dim Periodflag As Bit 'true will mean it is a teaching period

Dim Ramlocation As Byte

Dim Ramvalue As Byte

' 11. Initialise some values for time/date

_year = 10

_month = 1

_day = 17

_hour = 11

_min = 01

_sec = 0

Dispstr = ""

Msgstr = ""

Msgptr = 1

Minutesleft = 10

Periodflag = False

Timer1 = Scrolltime 'start timer correctly

720

'--

' 12. Program starts here

Do

 'clock and period display mode

 Gosub Read1307time 'get the current time and date

 Gosub Converttime 'put time into a string 14-12-46

 'need week of year to see if a school week and not holidays

 'first need to know the day of the year to calculate week of the year

 Days = Dayofyear(_day) '1jan = 0

 Incr Days 'so add one, 1jan = 1

 'however to get our weeks correct we need to adjust for the fact

 'that the first day of the year is not on a monday.

 'this is important otherwise rotations can be ok on a tue but not fri!!

 'the first week of the year is the week that has the first thursday

 Days = Days + Dayoffset

 Weekofyear = Days / 7 'must use word size

 Minuteofday = _hour * 60 'work out minutes since start of day

 Minuteofday = Minuteofday + _min

 Weekday = Dayofweek(_day) 'mon = 0

 Incr Weekday 'add one so monday = 1

 Rotation = Lookup(weekofyear , Weekrotation)

 I = Rotation + 4 'make a string to display rotation

 If I > 6 Then I = I - 6

 Rotationstr = Str(rotation) + "x" + Str(i)

 If Jumper = 1 Then 'normal mode

 If Minuteofday > 910 Then 'dont disp rotation after sch

 Rotationstr = ""

 End If

 Msgstr = " " 'leading spaces

 Msgstr = Msgstr + Timestr + " "

 Periodstr = ""

 'week of year starts with first full week i.e. 4Jan10 = week1

 Select Case Weekofyear 'if a school week get current period

 Case 4 To 14 : Gosub Getperiodstring 'term1 **************

 Case 17 To 26 : Gosub Getperiodstring 'term2 **************

 Case 28 To 37 : Gosub Getperiodstring 'term3 **************

 Case 40 To 49 : Gosub Getperiodstring ' term4 **************

 End Select

 If Periodflag = True Then Msgstr = Msgstr + Periodstr + " "

 If Periodflag = True And Minutesleft < 6 Then

 Msgstr = Msgstr + "cleanup "

 Led = 1

 Else

 Led = 0

 End If

 If Periodflag = True And Minutesleft < 6 And _sec < 15 Then

 Set Bluelight

 Else

 reset bluelight

 End If

 Msglen = Len(msgstr)

 End If ' keep looping forever

721

'time/date display/set mode

 If Jumper = 0 Then

 Led = 1 'led on

 Gosub Convertdate

 Gosub Readkeypad

 Select Case Key

 Case 0 : Msgstr = "press" 'initial value

 Case 1 : Msgstr = Timestr + Secstr

 Case 2 : Msgstr = Datestr

 Case 3 : Msgstr = Str(minuteofday) + "+" + Secstr

 Case 4 : Msgstr = Str(weekday) + " of7"

 Case 5 : Msgstr = "d+" + Str(days) 'day of year

 Case 6 : Msgstr = Str(weekofyear) + " of52"

 Case 7 : Msgstr = Rotationstr

 Case 8 : Gosub Incrday

 Case 9 : Gosub Decrday

 Case 11 : Gosub Incrmonth '#

 Case 10 : Gosub Zerosecs '*

 Case 12 : Gosub Incrmin 'A

 Case 13 : Gosub Decrmin 'B

 Case 14 : Gosub Incrhour 'C

 Case 15 : Gosub Decrhour 'D

 End Select

 Msglen = 7 'only ever display 7 characters

 End If

Loop

End 'end program

'--

'--

' 13. Subroutines

'read the keypad and convert to a recognisable digit

Readkeypad:

 K = Getkbd()

 Waitms 100

 Select Case K

 Case 0 : Key = 15 'D

 Case 1 : Key = 14 'C

 Case 2 : Key = 13 'B

 Case 3 : Key = 12 'A

 Case 4 : Key = 11 '#

 Case 5 : Key = 9

 Case 6 : Key = 6

 Case 7 : Key = 3

 Case 8 : Key = 0

 Case 9 : Key = 8

 Case 10 : Key = 5

 Case 11 : Key = 2

 Case 12 : Key = 10 '*

 Case 13 : Key = 7

 Case 14 : Key = 4

 Case 15 : Key = 1

 'Case 16 : Key = 16 'do not use this, rem last key press

 End Select

Return

'this routine zeros the seconds and writes the new time to the RTC

Zerosecs:

 _sec = 0

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 1 'display time

Return

'this routine increases the minute by one and writes the new time to the RTC

Incrmin:

 Incr _min

 If _min > 59 Then _min = 0

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 1 'display time

Return

722

'this routine decreases the minute by one and writes the new time to the RTC

Decrmin:

 Decr _min

 If _min > 59 Then _min = 59

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 1 'display time

Return

'this routine increasea the hours by one and writes the new time to the RTC

Incrhour:

 Incr _hour

 If _hour > 23 Then _hour = 0

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 1 'display time

Return

'this routine decreases the hours by one and writes the new time to the RTC

Decrhour:

 Decr _hour

 If _hour > 23 Then _hour = 23

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 1 'display time

Return

'this routine increasea the day by one and writes the new time to the RTC

Incrday:

 Incr _day

 If _day > 31 Then _day = 1 'no checking for month of year!!!!!

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 2 'display DATE

Return

'this routine decreases the hours by one and writes the new time to the RTC

Decrday:

 Decr _day

 If _day = 0 Then _day = 31

 Gosub Write1307time 'use only to set time

 Waitms Keydelay

 Key = 2 'display DATE

Return

'this routine increasea the day by one and writes the new time to the RTC

Incrmonth:

 Incr _month

 If _month > 12 Then _month = 1 'no checking for month of year!!!!!

 Gosub Write1307time 'use only to set time

 Waitms keydelay

 Key = 2 'display DATE

Return

723

to identify the current period

'basedupon day and time and rotation

Getperiodstring:

 If Weekday = 1 Then 'Mon

 Select Case Minuteofday

 Case Is < Mondayrc : 'before roll check

 Minutesleft = Mondayrc - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = False 'display period? true=yes

 Case Is < Mondayp1 : 'before P1

 Minutesleft = Mondayp1 - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayp2 : 'before P2

 Minutesleft = Mondayp2 - Minuteofday

 Periodstr = "p1-yr10 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayint : 'before interval

 Minutesleft = Mondayint - Minuteofday

 Periodstr = "p2 yr11 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayp3 : 'before P3

 Minutesleft = Mondayp3 - Minuteofday

 Periodstr = "1nteval " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayp4 : 'before P4 begins

 Minutesleft = Mondayp4 - Minuteofday

 Periodstr = "p3 yr12 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondaylunch : 'before lunch begins

 Minutesleft = Mondaylunch - Minuteofday

 Periodstr = "p4 yr13 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayssr : 'before SSR begins

 Minutesleft = Mondayssr - Minuteofday

 Periodstr = "lunch " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Mondayp5 : 'before P5 begins

 Minutesleft = Mondayp5 - Minuteofday

 Periodstr = "ssr " '+ Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Mondayend : 'before school ends

 Minutesleft = Mondayend - Minuteofday

 Periodstr = "p5 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < 915 : 'before 3:20

 Minutesleft = 0

 Periodstr = "bye bye"

 Periodflag = False

 Case Is > 914 : '3:20 and on

 Minutesleft = 0

 Periodstr = ""

 Periodflag = False

 End Select

 End If

724

If Weekday = 2 Then 'tuesday ROTATION

 Msgstr = Msgstr + Rotationstr 'display rotation

 Msgstr = Msgstr + " "

 Select Case Minuteofday

 Case Is < Tuesdayrc : 'before roll check begins

 Minutesleft = Tuesdayrc - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Tuesdayp1 : 'before P1 begins

 Minutesleft = Tuesdayp1 - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayp2 : 'before p2 begins

 Period = Rotation

 Minutesleft = Tuesdayp2 - Minuteofday

 Periodstr = Lookupstr(period , Tuett) 'get text from tue tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayint : 'before interval begins

 Minutesleft = Tuesdayint - Minuteofday

 Period = Rotation + 1

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Tuett) 'get text from tue tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayp3 : 'interval till before p3 begins

 Minutesleft = Tuesdayp3 - Minuteofday

 Periodstr = "1nteval " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayp4 : 'P3 till before P4 begins

 Minutesleft = Tuesdayp4 - Minuteofday

 Period = Rotation + 2

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Tuett) 'get text from tue tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdaylunch : 'before lunch begins

 Minutesleft = Tuesdaylunch - Minuteofday

 Period = Rotation + 3

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Tuett) 'get text from tue tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayssr : 'before SSR begins

 Minutesleft = Tuesdayssr - Minuteofday

 Periodstr = "lunch " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Tuesdayp5 : 'before p5 Begins

 Minutesleft = Tuesdayp5 - Minuteofday

 Periodstr = "ssr " '+ Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Tuesdayend : 'before school ends

 Minutesleft = Tuesdayend - Minuteofday

 Period = Rotation + 4

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Tuett) 'get text from tue tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < 915 : '3:20 school ended

 Minutesleft = 0

 Periodstr = "bye bye"

 Periodflag = False

 Case Is > 914 :

 Minutesleft = 0

 Periodstr = ""

 Periodflag = False

 End Select

 End If

725

 If Weekday = 3 Then ' wed

 Select Case Minuteofday

 Case Is < Wednesdaypd : 'before roll check begins

 Minutesleft = Wednesdaypd - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Wednesdayp1 : 'before P1 begins

 Minutesleft = Wednesdayp1 - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayp2 : 'before p2 begins

 Minutesleft = Wednesdayp2 - Minuteofday

 Periodstr = "p1 yr12 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayint : 'before interval begins

 Minutesleft = Wednesdayint - Minuteofday

 Periodstr = "p2 yr11 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayp3 : 'before p3 begins

 Minutesleft = Wednesdayp3 - Minuteofday

 Periodstr = "1nteval " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayp4 : 'before P4 begins

 Minutesleft = Wednesdayp4 - Minuteofday

 Periodstr = "p3 yr10 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdaylunch : 'before lunch begins

 Minutesleft = Wednesdaylunch - Minuteofday

 Periodstr = "p4-yr10 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayssr : 'before before SSR begins

 Minutesleft = Wednesdayssr - Minuteofday

 Periodstr = "lunch " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Wednesdayp5 : 'before p5 Begins

 Minutesleft = Wednesdayp5 - Minuteofday

 Periodstr = "ssr " + Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Wednesdayend : 'before school ends

 Minutesleft = Wednesdayend - Minuteofday

 Periodstr = "p5 yr13 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < 915 : '3:20 school ended

 Minutesleft = 0

 Periodstr = "bye bye"

 Periodflag = False

 Case Is > 914 :

 Minutesleft = 0

 Periodstr = ""

 Periodflag = False

 End Select

 End If

726

 If Weekday = 4 Then ' thu

 Select Case Minuteofday

 Case Is < Thursdayrc : 'before roll check begins

 Minutesleft = Thursdayrc - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Thursdayp1 : 'before P1 begins

 Minutesleft = Thursdayp1 - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayp2 : 'before p2 begins

 Minutesleft = Thursdayp2 - Minuteofday

 Periodstr = "p1 yr13 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayint : 'before interval begins

 Minutesleft = Thursdayint - Minuteofday

 Periodstr = "p2 yr10 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayp3 : 'before p3 begins

 Minutesleft = Thursdayp3 - Minuteofday

 Periodstr = "1nteval " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayp4 : 'before P4 begins

 Minutesleft = Thursdayp4 - Minuteofday

 Periodstr = "p3 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdaylunch : 'before lunch begins

 Minutesleft = Thursdaylunch - Minuteofday

 Periodstr = "p4 yr11 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayssr : 'before SSR begins

 Minutesleft = Thursdayssr - Minuteofday

 Periodstr = "lunch " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Thursdayp5 : ' before p5 Begins

 Minutesleft = Thursdayp5 - Minuteofday

 Periodstr = "ssr " + Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Thursdayend : 'school ends

 Minutesleft = Thursdayend - Minuteofday

 Periodstr = "p5 yr12 " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < 915 : '3:20 school ended

 Minutesleft = 0

 Periodstr = "bye bye"

 Periodflag = False

 Case Is > 914 :

 Minutesleft = 0

 Periodstr = ""

 Periodflag = False

 End Select

 End If

727

 If Weekday = 5 Then 'friday rotation

 Msgstr = Msgstr + Rotationstr 'display rotation

 Msgstr = Msgstr + " "

 Select Case Minuteofday

 Case Is < Fridayrc : 'before roll check begin

 Minutesleft = Fridayrc - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Fridayp1 : 'before P1 begins

 Minutesleft = Fridayp1 - Minuteofday

 Periodstr = Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridayp2 : 'before P2 begins

 Minutesleft = Fridayp2 - Minuteofday

 Period = Rotation

 Periodstr = Lookupstr(period , Fritt) 'get text from fri tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridayint : 'beforeinterval begins

 Minutesleft = Fridayint - Minuteofday

 Period = Rotation + 1

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Fritt) 'get text from fri tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridayp3 : 'before p3

 Minutesleft = Fridayp3 - Minuteofday

 Periodstr = "1nteval " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridayp4 : 'before p4

 Minutesleft = Fridayp4 - Minuteofday

 Period = Rotation + 2

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Fritt) 'get text from fri tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridaylunch : 'begins lunch begins

 Minutesleft = Fridaylunch - Minuteofday

 Period = Rotation + 3

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Fritt) 'get text from fri tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < Fridayssr : 'before ssr begins

 Minutesleft = Fridayssr - Minuteofday

 Periodstr = "lunch " '+ Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Fridayp5 : 'before p5 begins

 Minutesleft = Fridayp5 - Minuteofday

 Periodstr = "ssr " '+ Str(minutesleft) + " to go"

 Periodflag = False

 Case Is < Fridayend : '3:10 school ends

 Minutesleft = Fridayend - Minuteofday

 Period = Rotation + 4

 If Period > 6 Then Period = Period - 6

 Periodstr = Lookupstr(period , Fritt) 'get text from fri tt table

 Periodstr = Periodstr + " " + Str(minutesleft) + " to go"

 Periodflag = True

 Case Is < 915 : '3:20 school ended

 Minutesleft = 0

 Periodstr = "bye bye"

 Periodflag = False

 Case Is > 914 :

 Minutesleft = 0

 Periodstr = ""

 Periodflag = False

 End Select

 End If

Return

728

'--

Converttime:

'Converts Time In Bytes To A String

 Timestr = ""

 If _hour < 10 Then Timestr = "0"

 Timestr = Timestr + Str(_hour)

 Timestr = Timestr + "x" ' x = a dash

 If _min < 10 Then Timestr = Timestr + "0"

 Timestr = Timestr + Str(_min)

 'seconds

 Secstr = "" ' x = a dash

 If _sec < 10 Then Secstr = Secstr + "0"

 Secstr = Secstr + Str(_sec)

Return

Convertdate:

'converts date in bytes to a string

 Datestr = ""

 If _day < 10 Then Datestr = Datestr + "0"

 Datestr = Datestr + Str(_day)

 'Datestr = Datestr + "x" ' x = a dash

 'Select Case _month

 ' Case 1 : Datestr = Datestr + "jan"

 ' Case 2 : Datestr = Datestr + "feb"

 ' Case 3 : Datestr = Datestr + "nar"

 ' Case 4 : Datestr = Datestr + "apr"

 ' Case 5 : Datestr = Datestr + "nay"

 ' Case 6 : Datestr = Datestr + "jun"

 ' Case 7 : Datestr = Datestr + "jul"

 ' Case 8 : Datestr = Datestr + "aug"

 ' Case 9 : Datestr = Datestr + "sep"

 ' Case 10 : Datestr = Datestr + "0ct"

 ' Case 11 : Datestr = Datestr + "n0v"

 ' Case 12 : Datestr = Datestr + "dec"

 ' Case Else : Datestr = "x x x x"

 'End Select

 If _month < 10 Then Datestr = Datestr + "0"

 Datestr = Datestr + Str(_month)

 Datestr = Datestr + "x" + Str(_year)

Return

'--

Read1307time: 'RTC Real Time Clock

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte 0 'address to start sending from

 I2cstop

 Waitms 50

 I2cstart

 I2cwbyte &B11010001 'device code (reading)

 I2crbyte _sec , Ack

 I2crbyte _min , Ack

 I2crbyte _hour , Ack

 I2crbyte Weekday , Ack

 I2crbyte _day , Ack

 I2crbyte _month , Ack

 I2crbyte _year , Nack

 _sec = Makedec(_sec) 'convert 2xbcd in 1 byte to decimal byte

 _min = Makedec(_min)

 _hour = Makedec(_hour)

 Weekday = Makedec(weekday)

 _day = Makedec(_day)

 _month = Makedec(_month)

 _year = Makedec(_year)

 I2cstop

Return

729

'write the time and date to the RTC

Write1307time:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte &H00 'send address of first byte to access

 Temp = Makebcd(_sec) 'seconds

 I2cwbyte Temp

 Temp = Makebcd(_min) 'minutes

 I2cwbyte Temp

 Temp = Makebcd(_hour) 'hours

 I2cwbyte Temp

 Temp = Makebcd(weekday) 'day of week

 I2cwbyte Temp

 Temp = Makebcd(_day) 'day

 I2cwbyte Temp

 Temp = Makebcd(_month) 'month

 I2cwbyte Temp

 Temp = Makebcd(_year) 'year

 I2cwbyte Temp

 I2cstop

Return

Write1307ctrl:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte &H07 'send address of first byte to access

 I2cwbyte &B10010000 'start squarewav output 1Hz

 I2cstop

Return

Start1307clk:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte 0 'send address of first byte to access

 I2cwbyte 0 'enable clock-also sets seconds to 0

 I2cstop

Return

Write1307ram:

'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of byte to access

 I2cwbyte Ramvalue 'send value to store

 I2cstop

Return

'routine to read the contents of one ram location

'setup ramlocation first and the data will be in ramvalue afterwards

'no error checking ramlocation should be from &H08 to &H3F (56 bytes only)

Read1307ram:

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of first byte to access

 I2cstop

 Waitms 50

 I2cstart

 I2cwbyte &B11010001 'device code (reading)

 I2crbyte Ramvalue , Nack

 I2cstop

Return

730

Clear1307ram:

 Ramvalue = 00

 Ramlocation = &H08

 I2cstart

 I2cwbyte &B11010000 'send device code (writing data)

 I2cwbyte Ramlocation 'send address of byte to access

 For Ramlocation = &H08 To &H3F

 I2cwbyte Ramvalue 'send value to store

 Next

 I2cstop

Return

Writeram:

 Ramlocation = &H08

 Ramvalue = 111

 Gosub Write1307ram

 Ramlocation = &H09

 Ramvalue = 222

 Gosub Write1307ram

Return

Readram:

 Cls

 Ramlocation = &H08

 Gosub Read1307ram

 Lcd Ramvalue

 Lcd ":"

 Ramlocation = &H09

 Gosub Read1307ram

 Lcd Ramvalue

 Ramlocation = &H0A

 Gosub Read1307ram

 Lcd ":"

 Lcd Ramvalue

 Wait 5

Return

'--

'Interrupts

'message scrolling

Timer1_messagescroll:

 Timer1 = Scrolltime

 'copy 7 digits from message string into dispstring

 Dispstr = Mid(msgstr , Msgptr , 7)

 'only scroll if more than 7 digits

 If Msglen > 7 Then

 Incr Msgptr 'Move Msgptr

 If Msgptr > Msglen Then Msgptr = 1

 Else 'added 080510 for test mode

 Msgptr = 1

 End If

 'Gets each character from the dispstr

 ' looks up the binary for that character

 ' and puts it into the digit array

 For I = 1 To 7

 Ascii = Mid(dispstr , I , 1)

 Asci = Asc(ascii) 'convert asc to A NUMBER

 Select Case Asci 'convert assci to index for table below

 Case 0 To 47 : Asci = 25 'ignore non alpha, use spaces

 Case 48 To 57 : Asci = Asci - 22 'digits 0 to 9

 Case 57 To 96 : Asci = 25 'uppercase plus others

 Case 97 To 122 : Asci = Asci - 97 'lowercase

 Case Else : Asci = 25

 End Select

 Digit(i) = Lookup(asci , Text)

 Next

Return

731

'digit scanning , gets 1 digit at a time to display it

Timer0_digitscan:

 Timer0 = Scantimer ' preload timer

 'only 1 digit can be displayed at a time

 'so put data for next digit onto the segments

 'then turn on the next digit

 Incr Dig

 If Dig = 8 Then Dig = 1 'max is 7 digits

 Segmentbus = Digit(dig) 'get segmentsdata for this digit

 Select Case Dig 'turn on one digit

 Case 1 : Digitbus = &B10000000 'note there is no 0 digit

 Case 2 : Digitbus = &B01000000

 Case 3 : Digitbus = &B00100000

 Case 4 : Digitbus = &B00010000

 Case 5 : Digitbus = &B00001000

 Case 6 : Digitbus = &B00000100

 Case 7 : Digitbus = &B00000010

 End Select

 Return

'lookup tables FOR DIGIT DISPLAY

'code for each segment to identify it 'segments = &b C D E B A F G 0

'even though some characters appear as capitals only use small letters in the text

Text:

'A,b,C,d,E,F

Data &B10111110 , &B11100110 , &B01101100 , &B11110010 , &B01101110 , &B00101110

Text2:

'G,h,i,J, ,L

Data &B11101100 , &B10100110 , &B00100000 , &B11110000 , &B00000000 , &B01100100

Text3:

', ,n,o,P, ,r

Data &B00000000 , &B10111100 , &B11100010 , &B00111110 , &B00000000 , &B00100010

Text4:

'S,t,u, , , ,

Data &B11001110 , &B01100110 , &B11110100 , &B11110100 , &B00000000 , &B00000010

Text5:

'Y,-,

Data &B11010110 , &B00000000

Numbers:

'0,1,2,3,4

Data &B11111100 , &B10010000 , &B01111010 , &B11011010 , &B10010110

'5,6,7,8,9

Data &B11001110 , &B11101110 , &B10011000 , &B11111110 , &B10011110

'use bascom to get dayofyear calc

'divide dayofyear by 7 to get week

'note that the first week of the year will be 0 not 1

Weekrotation:

'2010

Data 0 , 0 , 0 , 0 , 0 , 0 'weekofyear 0,1,2,3 ,4

Data 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 0 , 0 'weekofyear 5-12 - rotations started in 2nd week

Data 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 , 6 , 1 , 0 , 0 'weekofyear 17-26

Data 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 , 0 , 0 'weekofyesr 29-38

Data 6 , 1 , 2 , 3 , 4 , 5 , 6 , 1 , 0 , 0 , 0 'weekofyear 41-49

'2009

'Data 0 , 0 , 0 , 0 'weekofyear 0,1,2,3

'Data 0 , 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 0 , 0 'weekofyear 4-14

'Data 5 , 6 , 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 0 , 0 'weekofyear 17-26

'Data 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 , 6 , 0 , 0 'weekofyesr 29-38

'Data 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 0 , 0 , 0 'weekofyear 41-49

'2008

'Data 0 , 0 , 0 , 0 , 0 'weekofyear 0,1,2,3,4

'Data 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 , 0 , 0 'weekofyear 5-15...

'Data 6 , 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 0 , 0 'weekofyear 18-26

'Data 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 , 6 , 0 , 0 'weekofyesr 29-38

'Data 1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 0 , 0 , 0 'weekofyear 41-48

Tuett: 'note blank data as lookup starts at 0

Data "" , "p1 yr11" , "p2 yr12" , "p3 yr13" , "p4 yr10" , "" , "p6-yr10"

Fritt:

Data "" , "p1 yr10" , "p2-yr10" , "p3 yr11" , "p4 yr12" , "p5 yr13" , " "

732

52 The MAX 7219/7221 display driver IC’s

733

PCB Layout

734

'--
' Author: B. Collis
' Date: 14 April 2003
' Version: 2.00
' File Name: 7219_v2.00.bas
'--
' Description:
' This program drives the max7219/7221 Display Driver IC and
' eight 7-segment displays
' Display initialisation is in a routine
' A small subroutine handles the clocking of data to the display
' So far this program only sets up the display, puts 1 to 8 on
' the digits and then flashes them all on and off
'--
' Compiler Directives
$crystal = 8000000 ' calculate delays accurately
$regfile = "m8535.dat" ' so compiler can identify
 ' particular micro features
'--
' Hardware Setups
' setup direction of all ports
Config Porta = Output
Config Portb = Output
Config Portc = Output
Config Portd = Output

Porta = 255 'turn off LEDs on ports
Portb = 255
Portc = 255
Portd = 255

Disp_data Alias Portb.0 'Data into 7219
Disp_load Alias Portb.3 'Load
Disp_clk Alias Portb.2 'clock

'--
' Constants
Const Timedelay = 75

'--
' Declare Variables
Dim Command As Integer

'--
' Program starts here

Gosub Max_init
Gosub Max_1on1
Do
 Gosub Max_flash
Loop
End 'end program

735

' Sub-routines here
Max_1on1:
 Command = &H0101 '1 on display no. 1
 Gosub Max_disp
 Command = &H0202 '2 on display no. 2
 Gosub Max_disp
 Command = &H0303 '3 on display no. 3
 Gosub Max_disp
 Command = &H0404 '4 on display no. 4
 Gosub Max_disp
 Command = &H0505 '5 on display no. 5
 Gosub Max_disp
 Command = &H0606 '6 on display no. 6
 Gosub Max_disp
 Command = &H0707 '7 on display no. 7
 Gosub Max_disp
 Command = &H0808 '8 on display no. 8
 Gosub Max_disp
Return
'subroutine to initialise the display
Max_init:
 Command = &H0F01 'display test on
 Gosub Max_disp
 Waitms 1000
 Command = &H0F00 'display test off
 Gosub Max_disp
 Waitms 1000
 Command = &H0C01 'normal operation
 Gosub Max_disp
 Command = &H09FF 'decode mode bcd all digits
 Gosub Max_disp
 Command = &H0A02 'set intensity 0=min F=max
 Gosub Max_disp
 Command = &H0B07 'all 7 digits active
 Gosub Max_disp
Return
'subroutine to flash display on and off does not flash individual digits but shutsdown the IC
' and puts it back into normal operation
Max_flash:
 Command = &H0C00 'shutdown display
 Gosub Max_disp
 Waitms 1500
 Command = &H0C01 'normal operation
 Gosub Max_disp
 Waitms 1500
Return

'simple routine to clock data out to the display
Max_disp:
 Reset Disp_load
 Shiftout Disp_data , Disp_clk , Command , 1 'msb first
 Set Disp_load
Return

736

52.1 AVR clock/oscillator

The AVR executes instructions at the rate set by the system clock (oscillator). There are a
number of different ways that this clock can be set up using either internal components of the
micro or external components. These are:

 Internal Resistor-Capacitor (lesser accuracy)

 External RC

 External Ceramic Resonator

 External Crystal (more accuracy)

 ceramic resonator crystals

Within the micro reprogrammable fuse links (just like

the links on a computer motherboard but set via software) are used to determine which method
is used.
The ATMega8535-16PI clock can range up to 16MHz, however initially it is configured to run
from the internal RC clock at a 8MHz rate.

In BASCOM when the micro is connected and powered
up the settings can be changed by selecting MANUAL
PROGRAM.

 From the window that appears select the LOCK AND FUSE BITS tab. Bascom will then read
the current settings.

The Internal RC
oscillator may be
changed to 1, 2 or
4MHz by selecting the
line in the window and
using the drop down
that appears to.

After changing the
Fusebit settings select
the Write FS button.
After it has
programmed the
fusebits, select the
FlashRom tab before
exiting
(YOU MAY NEED TO
DISABLE THE JTAG
SETTING AS WELL)
 DO NOT CHANGE

ANYTHING ELSE, YOU RISK STUFFING UP YOUR MICRO!

737

53 Cellular Connectivity-ADH8066

The ADH8066 is a cellular module from www.sparkfun.com. The module is the green PCB with the
SIM card on it. The larger board is sparkfun’s evaluation board.

The photos below show both sides of the ADHmodule.

738

53.1 ADH prototype development

The evaluation board was built up into a circuit using an ATMega16 and a 20x4 charcter LCD on
veroboard.

739

Even though the evaluation board was used, no features of it were used, the power supply was provided by an LM350 voltage regulator
on the veroboard not through the voltage regulator on the ADH evaluation board. This prototype was made this way as the eval board
was at hand and the circuit design was made to help students design boards for their own projects which would use the breakout board.
With the breakout board you must connect DSR0 to DTR0 and both to ground via a 1K resistor)

740

53.2 ADH initial test setup block diagram

Block diagram and schematic explanation:

1. ADH ON_KEY: a transistor circuit using a BC337 is used to pull the ON KEY input low when
portC.4 is taken high.

2. The COMMAND and NETWORK outputs of the ADH Eval board are taken via transistors to
two input pins of the AVR PinC.3 and PinC.5.

3. A 2N7000 FET was used as one of those just to show that a FET could be used just as
effectively as a transistor as an interface.

4. Note how the input pins of the AVR are connected to the outputs of the transistor circuits not
the output pins of the ADH module.

5. The RX pin of the ADH is connected tothe TX pin of the AVR
6. The TX pin of the ADH is connected to the RX pin of the AVR
7. The ADH communicates at 115200 baud 8N1 (8 bit, no parity, 1 stop bit) No flow control is

required.
8. An external crystal is used for the AVR, 7.372800Mhz, at such a high baud rate of 115200

using the internal clock or a crystal

741

53.3 Process for using the ADH

Here the ADH evaluation board is connected to a PC via a USB cable and under the control of
hyperterminal. In the above screen shot the text in lower case I typed the text in upper case was
received from the ADH. Note in the descriptionhere I refer to both ‘message’ and ‘sms’, a message is
the serial communication sent from the ADH to the microcontroller; an sms is the text message from
another cellular phone to the ADH.

1. Power is applied to the evaluation board.
o The ON KEY input is pulled low for over 2 seconds then released high.
o The Command LED will come on
o The ADH sends a bunch of characters inclusing the text IIII and the text READY to the AVR

(IIII is a unique message so we can detect this to see that the adh is alive and ok and we are
reading the serial comms properly).
o Then the ADH module will try and register with a cellular network. I put in a prepay Vodafone

NZ sim card and the network LED came on within 15 seconds.
o This turns on the LED and giving a hardware input to the AVR that the network is on .
o The module sends CREG+1 to the AVR for registration succesful, or +CREG: 3 for network

denied, or +CREG: 0 for no network(is the antenna unplugged?).

742

o For testing purposes I put in an old sim card that had expired (not been topped up with credit
for over 12months) and it responded initially with +CREG: 1 and the network pin went on, then a
few seconds later sent +CREG: 3 – network denied and the network pin turned off. Testing for
CREG:1 at this stage is not a good idea as it could mislead you)

2. The module is ready so it can now be controlled using AT commands.
o We can send AT+CPIN? To check the sim card is ok and the ADH responds +CPIN:

READYOK;
o We can send AT+CREG=? And the ADH responds +CREG: 1 (we should test thisoften

in our program to see if everything is ok).
o However for the above test I sent AT+CSQ and the ADH responded with signal strength

e.g. CSQ: 27/99 and OK (the number should range from 5/99 to 31/99). CSQ: 99/99
means no signal (did you plug in the antenna?)

o We should test this often in our program tosee if all is ok
3. I then put the module into txt mode using at+cmgf=1 and set the module to notify us when a

new sms comes in with at+2,1,0,0,0.
4. An sms was received and the module sent +CMTI: “SM”,2. This means that a message has

arrived and it is in the sim memory in slot 2.
o I could put the ADH into a mode where the message is delivered automatically, but

chose to have an indication delivered instead.
o Note that the default setting is to have no indication from the ADH that an sms has

arrived.
5. I tried to retrieve the message but made an error
6. I retrieved the message with at+cmgr=2 as it is in memory slot 2.

o It has “REC UNREAD” as it is the first time I have read the message. Every message is
tagged as READ or UNREAD and there is a command to read all messages or all
unread messages.

o The number it cam from
o The time and date it was received
o The message I sent “MSG:123abc456def”
o The OK response.
o Note this message from the ADH is 60 characters long plus the actual sms contents,

making it over 80 characters in length including any non printable charactersa such as
the 4 CR’s and LF’s that are in the message.

7. I sent the command at+cmgd=2 to delete the message .

The final software will have to do an extensive start up routine to determine that the ADH is ok and on
the network. A good point ot note is to use a prepaid cellular account for this sort of system rather
than an account where you are billed. If the system locks up and sends a lot of messages then it
could become very costly!$!

743

53.4 ADH communications

The ADH will send data to the microcontroller and can send a lot of data at once especially if you tell
it to send a stored message to you. So the serial communications requires a buffer to hold all the
incoming information otherwise we would only see some of it coming in.
Config Serialin = Buffered , Size = 200
The way the buffering works in Bascom is that when you compile your program Bascom sets aside
RAM (200 bytes in this case) to hold the incoming data. This is a circular buffer so if too much data
arrives then data past 200 characters will overwrite the beginning of the buffer and you will begin to
lose data. If you read the data from the buffer before new data arrives then it wont be lost. Data is
read using the INKEY() function in Bascom (or you can have the program wait for data to come in
using WAITKEY).

This routine checks to see if new data has come in and then copies it to a string we have
dimensioned. Now it seems a bit redundant to have 2 buffers for the data coming in, one that Bascom
dimensioned and one that we dimensioned, and you could just use the Bascom buffer if you really
wanted to. However because it is a circular buffer then data can be spread from the end of it to the
beginning making it hard for doing things with. So unless you need to really conserve ram space
having you own buffer as well is much easier.

Check_for_adh_comms:

 I = Ischarwaiting() 'see if buf has something (I=0 Is no, I=1 is yes)

 While I = 1 'copy all chars to our string

 Bytein = Inkey() 'get one char

 If Bytein > 31 Then 'if printable char

 Adh_rcvd_message = Adh_rcvd_message + Chr(bytein) 'add

 End If

 I = Ischarwaiting() 'see if any more charaters in meesage

 Set Adh_new_mesg_flag 'flag that our string has something

 Wend 'if no data exit the loop

Return

Note how a while-wend is used here rather than a do-loop-until. The big difference here explains why
we have both in programming. A while –wend may never execute at all, so if there is no data to read
it will skip past and return from the subroutine. A do-loop-until will always be executed at least once,
and we don’t want this as it will try and process data that isn’t there!

There is a second way of doing this and that is to use a serial interrupt, Bascom has this built into it,
however I decided to not use the interrupt. I did this because I don’t think speed of getting to the
buffer is critical for my application.

744

53.5 Initial state machine

There are several different operational aspects of the device to keep track of:

 is the hardware ok?

 Can we talk to it?

 Can it register on the network?

 Is the sim ok?

 What is the signal strength?

 Is their credit?

The initial thoughts about the different states of the device are that it is:

 DOWN

 TRYING TO BECOME OPERATIONAL

 OPERATIONAL

 RECEIVED AN SMS

745

53.6 Status flags

A number of binary flags were created to keep track of all the different things happening within the
system. There are (at least) two ways of doing this.

 I could dimension a whole lot of flags individually e.g. dim adh_sim_flag as bit, adh_creg_flag
as bit and so on.

 Or do what I chose to do which was to dimension a status variable (dim adh_status as word)
and then allocate my flags to individual bits within that variable using the alias command.

'status bits

Adh_com_pin_flag Alias Adh_status.15 'command pin hardware connection ok

Adh_nw_pin_flag Alias Adh_status.14 'network pin hardware connection ok

Adh_alive_flag Alias Adh_status.13 'serial comms is working between micro and ADH

Adh_creg_flag Alias Adh_status.12 'ADH is registerd on cell nw

Adh_sim_flag Alias Adh_status.11 'sim card is functioning ok

Adh_ss_flag Alias Adh_status.10 'signal strength ok (not 99)

Adh_echo_flag Alias Adh_status.9 'we turned echo off

Adh_sms_mode_flag Alias Adh_status.8 'we set sms mode

Adh_ok_flag Alias Adh_status.7 'get yourself a smiley here!

Adh_sms_rcvd_flag Alias Adh_status.6 'an sms has been received from other cellphone

Adh_$_flag Alias Adh_status.5 'we have credit to send

Adh_new_mesg_flag Alias Adh_status.4 'new serial message from adh to micro

Adh_ok_rcvd_flag Alias Adh_status.3 'ADH all functioning ok

Credit_bal_flag Alias Adh_status.2 'credit over $1.00

Adh_sms_sending_flag Alias Adh_status.1 'sfter send while waiting for sent response

Adh_error_flag Alias Adh_status.0 'had an error returned from the adh

Adh_status = 0 'reset all flags for initial start

The reason I chose the second way is because I wanted to be able to display them all easily at once
on the LCD, especially during the initial stages of programming.

Adh_com_pin_flag Alias Adh_status.15

Adh_nw_pin_flag Alias Adh_status.14

these two flags will be used to tell us that the ADH pin outputs command and network are functioning.
At any stage if either of these drop out then there is a problem with our system.

Adh_alive_flag Alias Adh_status.13 'serial comms is working between micro and ADH

Adh_creg_flag Alias Adh_status.12 'ADH is registerd on cell nw

Adh_sim_flag Alias Adh_status.11 'sim card is functioning ok

Adh_ss_flag Alias Adh_status.10 'signal strength ok (not 99)

these flags inidicate to us that the ADH is functioning ok.

Adh_echo_flag Alias Adh_status.9 'we turned echo off

Adh_sms_mode_flag Alias Adh_status.8 'we set sms mode

these two flags really aren’t used except to keep track at the beginning that we have set the ADH up
how we need it before going on to using it.

746

53.7 Second state machine

In the second state machine the detail of most of these flags and their settings are exposed (although
at this time the credit amount hasn’t been checked)

747

53.8 StateMachine 3

748

53.9 Sending an SMS text

The state st_adh_operational now has another event, when a switch is pressed the ADH requests a credit balance from the cellular
provider.
'**************************

Sms_request_balance:

 Sms_txt = "bal"

 Sms_number = "777"

 Print "at+cmgs={034}" ; Sms_number ; "{034}"

 Waitms 50

 Print Sms_txt

 Waitms 50

 Print "{026}"; 'send Ctrl-Z suppress crlf

Return

The format for sending an SMS requires the number to be entered as AT+CMGS=”02187654321”
And the ADH responds with a > (greater than symbol) awaiting the sms contents.

Of special note is how we embed the “ within the string to be sent to the ADH. The print command uses the “ as the start and finish of the
string, but we also need it to be part of the string. This is where we use a special feature of Bascom with braces {} so in the line
 Print "at+cmgs={034}" ; Sms_number ; "{034}" the {034} means put the ascii character 34 within the string. So the string sent to the
ADH will be at+cmgs=”777”

After the sms text has been sent it needs a CRTL-Z or ascii character 26 to be sent to tell the ADH that all the text contents have been
sent. You cannot send a CR-LF to the ADH as that just means a new line of text within the same message. To send a character 26 we
again use the {} so the command is Print "{026}"; Now take extra special note of the semicolon at the end of the line. When thi sis

added at the end of a line it means do not send a CR-LF at the end of the string. If you foget this the ADH will not recognise the special
character ascii 26.

749

53.10 Receiving an SMS text

When an SMS text comes into the ADH it sends a message to the microcontroller

 Containg +CMTI: this is detected within the Process_adh_comms: subroutine.

To this subroutine is added another test and another flag is added to the system ‘Adh_sms_rcvd_flag’
 'received an sms

 Temp_b = Instr(adh_message , "+CMTI:") 'see if within message

 If Temp_b > 0 Then 'yes it is

 Temp_b = Temp_b + 12 'ignore first part

 Message_len = Len(adh_message) 'find end of message

 Incr Message_len 'or we get wrong part

 Message_len = Message_len - Temp_b 'get the number of chars in sim mem address

 Temp_str = Right(adh_message , Message_len)

 Reset Adh_new_mesg_flag 'got the new message

 Set Adh_sms_rcvd_flag 'it is an sms so move to process it

 End If

Once the flag is set the state will change to st_sms_received, the sms will be read from the ADH and the sms will be split into its different
parts, displayed and any programmed actions are processed.

750

53.11 Splitting a large string (SMS message)

Using the program Realterm the adh to microcontroller communications were monitored. This
program is useful in that it exposes all the characters sent e.g. CR LF and other non printing ascii
codes.

Specifically this message is of interest

To be able to split this string into its component parts we must understand it in general terms; what
that means is identify what is structure and what is contents.

+CMGR: This is structure, it is the same for all sms messages

“REC UNREAD” This is structure in that it starts with “ and finishes with “
But inside the “” the contents will differ. It might be “REC READ” if the message
has been read once before, so we can use the “” possibly to help us.

, The first comma will be before the senders number – very useful structure,
note the structure has no spaces before or after the comma

“777” Again some structure (the “”) and some contents (777) note no spaces

, Another comma – definite structure indicator here

“” This is some sort of sender identification, sometimes the text comes back and
has “Customer Service” here

, Another comma

“date,time” Closely inspect the structure here “” to start and stop and comma between the
date and time. Also no spaces. Not sure what the +48 means

Txt message This has a LF between each line of the txt, a final LF then two CRLF then an
OK +CRLF at the end

751

There is a SPLIT function in Bascom, however its not useful in this situation as the structure is not
even between the different parts. We use the command INSTR to find the parts of the string.

In out string adh_message all the ascii characters less than 32 in the ascii table have been removed,
this includes 13 and 10 (CR LF). So we cannot use those to help us with the messages structure. We
will use the commas as they wil always be the in the same place.
The first part of the routine to fn the phone number is this:

 Find the first comma
o INSTR will help here as it gives us the first position of a character in a string
o Temp_b = Instr(1 , Adh_message , ",")
o Looking at this message count all the characters from the + at the beginning until you

get to the first comma. Include all spaces. This means the variable temp_b will have 19
in it

o The first character of the phone number will always be another 2 places further on
o Temp_b = Temp_b + 2
o Temp_b now has 21 in it

 Find how many characters to retrieve from the string. If phone numbers were always the same
length it would be easy just get X digits starting from the first digit. However they aren’t so we
need to get the position of the last digit then work out the difference between the two.

 Find the next comma, the last digit will be two back from this
o Temp_b2 = Instr(temp_b , Adh_message , ",")

o This means starting at the first digit of the phone number go forward until another
comma is found

o The variable Temp_b2 will have 25 in it
o Temp_b2 = Temp_b2 - 2
o The last character of the phone number will be 2 places before the comma (23)

 Find the difference between the two and add 1
o Temp_b2 = Temp_b2 - Temp_b
o Temp_bw will now be 23-21 = 2
o Incr Temp_b2

o Temp_b2 will now be 3, the right number of digits to get

 Get the telephone number
o Sms_number = Mid(adh_message , Temp_b , Temp_b2)

o The number will be located at temp_b and we need to get temp_b2 number of digits
o So in this message we get the three characters starting from 21 to get 777

 Note that most phone numbers will have a + at the front as well (see a few pages back)

 Now we will ignore the next part of the message the “” or “Customer Service”
o So starting from temp_b we find the position of the next comma
o We reuse the variable temp_b because we wont need the old value anymore
o Then we add 1 to get past the comma

 Now we will get the date
o Find the position of the next comma
o Then we add 2 to get to the first character of the date
o The date willalways be 8 characters e.g. 12/05/23
o And get the date into a temporary string temp_20

 Then we get change the date string around because its in year/month/day and in NZ we want
day/month/year

o This is done by copying the parts we want from temp_20 into sms_date.
o RIGHT, MID and LEFT are useful commands for this.

 Time is then extracted – it is also 8 characters e.g. 23:12:45

 The sms contents are extracted using the LEN command to tell us the length of the whole
message.

752

Here is the routine to split the SMS up into the parts we want
Split_sms:

 'identify diff parts of sms by using the commas between them

 'get first part of sms - the number

 Temp_b = Instr(1 , Adh_message , ",") 'find the first comma

 Temp_b = Temp_b + 2

 Temp_b2 = Instr(temp_b , Adh_message , ",") 'get nex comma

 Temp_b2 = Temp_b2 - 2

 Temp_b2 = Temp_b2 - Temp_b

 Incr Temp_b2

 Sms_number = Mid(adh_message , Temp_b , Temp_b2)

 'ignore second part of sms this will most likely be "" , to do this

 'get the next comma after the beginning of the number

 'this will be the end of the number

 'note that when you txt bal to 777 this part contains "Customer Service"

 'increase this by 1 then get the next comma

 Temp_b = Instr(temp_b , Adh_message , ",")

 Incr Temp_b '

 'get 3rd part of sms this will be date (it is 8 characters long)

 Temp_b = Instr(temp_b , Adh_message , ",") 'get next comma

 Temp_b = Temp_b + 2 'get the first char of date

 Temp_20 = Mid(adh_message , Temp_b , 8)

 'change to NZ date format

 Sms_date = Right(temp_20 , 2)

 Sms_date = Sms_date + "/"

 Sms_date = Sms_date + Mid(temp_20 , 4 , 2)

 Sms_date = Sms_date + "/"

 Sms_date = Sms_date + Left(temp_20 , 2)

 'get 4th part of sms this will be time (it is 8 characters long)

 Temp_b = Instr(temp_b , Adh_message , ",")

 Temp_b = Temp_b + 1 'time is 1 on from the comma

 Sms_time = Mid(adh_message , Temp_b , 8)

 'get 5th part of sms this will be contents

 'it starts at 1 after the " after the end of the time

 ' and goes through to 2 characters before the end

 Temp_b = Instr(temp_b , Adh_message , "{034}") 'find the {

 Temp_b = Temp_b + 1

 Temp_b2 = Len(adh_message) 'get the full length

 Temp_b2 = Temp_b2 - Temp_b

 Decr Temp_b2 'exclude OK on the end of the message

 Sms_txt = Mid(adh_message , Temp_b , Temp_b2)

Return

753

53.12 Converting strings to numbers

The credit balance is currently stored as a string, a bunch of ascii characters, it is not a number that
we can add and subtract to.
So we need to convert it and place it in a numeric type variable. As it has a decimal pointit could be a
single type, but that’s a bit wasteful as a single is 4 bytes. A word willd o if we drop the decimal place
and just store the creit as cents instead of dollars. $40.84 would then become 4084.

'what should happen when a specific sms is received

Process_sms_txt:

 'look for a balance

 Temp_b = Instr(sms_txt , "Bal:")

 If Temp_b > 0 Then 'got an sms with Bal in it

 Temp_b = Temp_b + 5 'starting pt for amount

 Temp_b2 = Instr(temp_b , Sms_txt , ".") 'find decimal pt

 Temp_b2 = Temp_b2 + 2 'place of last digit of the amount

 Temp_b2 = Temp_b2 - Temp_b

 Incr Temp_b2 'number of digits to get

 Credit_bal_str = Mid(sms_txt , Temp_b , Temp_b2)

 'convert string to number

 Temp_20 = Credit_bal_str

 Temp_b = Instr(Credit_bal_str, ".")

 Delchar Temp_20 , temp_b 'remove decimal pt

 Credit_bal_cents = Val(temp_20) 'convert to word var

 If Credit_bal_cents > 100 Then 'more than a dollar

 Set Credit_bal_flag

 Else

 Reset Credit_bal_flag

 End If

 End If

Return

Again the structure is identified.

 It will always be Bal:$ and then a number like 5.65 or 124.56 or 0.34

 So first we copy just the characters of the amunt e.g. 40.84 into the variable credit_bal_str
o We use instr to find the location of the decimal point and know that the end of the credit

value will be two characters after the decimal point.
o We copy just the credit amount to another string

 Instr is used to finfd the decimal point in this new string

 Then we use the DELCHAR command we delete the character at that location

 The Bascom command VAL is used to convert the string (e.g. “4084”) to a number and the
variable credit_val_cents now has 4,084 in it.

754

53.13 Full Program listing for SM3

'--

' Title Block

' Author: B.Collis

' Date: 2 may 2012

' File Name: ADH8066_SM3.bas

'--

' Program Description:

'

'--

' Compiler Directives (these tell Bascom things about our hardware)

$crystal = 7372800 'the crystal we are using

$regfile = "m16def.dat" 'the micro we are using

$baud = 115200

'**

'Hardware Setups

' setup direction of all ports

Config Porta = Output '

Config Portb = Output '

Config Portc = Input '

Config Portd = Input '

'LCD

Config Lcdpin = Pin , Db4 = Portb.5 , Db5 = Portb.6 , Db6 = Portb.7 , Db7 = Portb.4 , E =

Portb.0 , Rs = Portb.1

Config Lcd = 20 * 4 'configure lcd screen

'Serial

Config Serialin = Buffered , Size = 200 ', Bytematch = All 'int on rx of CR

'Configure internal interrupt hardware

'Interrupt Timer1_1S

'this code setup gets timer1 to interrupt the micro every 1 second

Config Timer1 = Timer , Prescale = 256

On Ovf1 Timer1_1s_isr

'Const T1_preload = 34287 '8MHz

Const T1_preload = 36736 '7.372800MHz

Enable Timer1

Enable Interrupts

'Hardware Aliases

Adh_command_pin Alias Pinc.5

Adh_network_pin Alias Pinc.3

Adh_on_key Alias Portc.4

Set Portc.5 'pullup resistor

Set Portc.3 'pullup resistor

Tact1 Alias Pind.2

Tact2 Alias Pind.3

Tact3 Alias Pind.4

Set Portd.2 'pullup resistor

Set Portd.3 'pullup resistor

Set Portd.4 'pullup resistor

Config Portd.7 = Output

Blu_led Alias Portd.7

Config Portc.0 = Output

Yel_led Alias Portc.0

Config Porta.2 = Output

Piezo Alias Porta.2

Config Porta.4 = Output

Servo Alias Porta.4

755

'**

'Dimension Variables

'State Variables

Dim State As Byte

Const St_adh_down = 0

Const St_checking_adh_operation = 1

Const St_adh_operational = 2

Const St_sms_received = 3

State = St_adh_down 'set the initial state

'Global variables

Dim Adh_status As Word

Dim Bytein As Byte 'reading bytes from uart

Dim Temp_20 As String * 20

Dim Message_len As Byte

Dim I As Byte

Dim Temp_b As Byte

Dim Sig_str As String * 3

Dim Temp_b2 As Byte

Dim Temp_w As Word

Dim Temp_str As String * 3

Dim Adh_message As String * 200

Dim Sec_count As Byte

Dim Min_count As Byte

Dim Sim_sms_memory As String * 3

Dim Sms_number As String * 18

Dim Sms_date As String * 8

Dim Sms_time As String * 8

Dim Sms_txt As String * 100

Dim Credit_bal_str As String * 7

Dim Credit_bal_cents As Word 'in cents

'Initialise Variables

Credit_bal_str = "00.00"

756

'status bits

Adh_com_pin_flag Alias Adh_status.15 'command pin hardware connection ok

Adh_nw_pin_flag Alias Adh_status.14 'network pin hardware connection ok

Adh_alive_flag Alias Adh_status.13 'serial comms is working between micro and ADH

Adh_creg_flag Alias Adh_status.12 'ADH is registerd on cell nw

Adh_sim_flag Alias Adh_status.11 'sim card is functioning ok

Adh_ss_flag Alias Adh_status.10 'signal strength ok (not 99)

Adh_echo_flag Alias Adh_status.9 'we turned echo off

Adh_sms_mode_flag Alias Adh_status.8 'we set sms mode

Adh_ok_flag Alias Adh_status.7 'get yourself a smiley here!

Adh_sms_rcvd_flag Alias Adh_status.6 'an sms has been received from other cellphone

Adh_$_flag Alias Adh_status.5 'we have credit to send

Adh_new_mesg_flag Alias Adh_status.4 'new serial message from adh to micro

Adh_ok_rcvd_flag Alias Adh_status.3 'ADH all functioning ok

Credit_bal_flag Alias Adh_status.2 'credit over $1.00

Adh_sms_sending_flag Alias Adh_status.1 'sfter send while waiting for sent response

Adh_error_flag Alias Adh_status.0 'had an error returned from the adh

Adh_status = 0 'reset all flags for initial start

'constants

Const Display_delay = 500

Const Adh_receive_delay = 20

Deflcdchar 7 , 28 , 16 , 28 , 7 , 5 , 7 , 4 , 4 'commpin

Deflcdchar 6 , 4 , 8 , 16 , 8 , 23 , 5 , 7 , 4 ' network pin

Deflcdchar 5 , 8 , 31 , 8 , 32 , 2 , 31 , 2 , 32 ' alive-comm ok

Deflcdchar 4 , 2 , 4 , 8 , 4 , 2 , 4 , 8 , 16 ' registered

Deflcdchar 3 , 14 , 21 , 21 , 21 , 17 , 27 , 21 , 14 ' sim

Deflcdchar 2 , 4 , 10 , 21 , 10 , 4 , 4 , 4 , 4 ' sig strength

Deflcdchar 1 , 31 , 32 , 10 , 10 , 32 , 4 , 10 , 17 ' not ok smiley

Deflcdchar 0 , 31 , 32 , 10 , 32 , 4 , 17 , 10 , 4 ' ok smiley

'**

'Program starts here

Cls 'clears LCD display

Cursor Off 'no cursor

Lcd "ADH"

For I = 1 To 5

 Set Yel_led

 Set Blu_led

 Waitms 50

 Reset Yel_led

 Reset Blu_led

 Waitms 100

Next

757

'**

'************* State Machine **************

'**

Gosub Reset_status

Do

 '*************** state st_adh_down ***************

 While State = St_adh_down

 Locate 4 , 1

 Lcd "st=" ; State

 Gosub Check_hw_ip_flags

 Gosub Display_status

 If Adh_com_pin_flag = 0 Then Gosub Adh_full_restart

 If Adh_com_pin_flag = 1 Then State = St_checking_adh_operation

 Wend

 '*************** state st_checking_adh_operation ***************

 While State = St_checking_adh_operation

 Locate 4 , 1

 Lcd "st=" ; State

 Gosub Check_hw_ip_flags

 Gosub Display_status

 Gosub Adh_echo_off

 Gosub Adh_check_regn

 Gosub Adh_check_sim

 Gosub Adh_check_ss

 Gosub Adh_set_sms_mode

 Gosub Adh_check_all_ok

 If Adh_nw_pin_flag = 0 Then Gosub Adh_full_restart

 If Adh_ok_flag = 1 Then

 State = St_adh_operational

 Gosub Reset_min_count

 Gosub Clear_lcd

 End If

 If Adh_com_pin_flag = 0 Then State = St_adh_down

 Wend

758

'*************** state st_adh_operational ***************

 While State = St_adh_operational

 Locate 4 , 1

 Lcd "st=" ; State

 Gosub Check_hw_ip_flags

 Gosub Display_adh_operational

 Gosub Check_for_adh_comms

 Gosub Display_balance

 If Min_count > 0 Then

 Gosub Reset_adh_ss_flag

 Gosub Adh_check_ss

 Gosub Reset_min_count

 End If

 If Adh_ss_flag = 0 Or Adh_nw_pin_flag = 0 Then

 State = St_adh_down

 Gosub Reset_adh_ok_flag

 End If

 If Adh_new_mesg_flag = 1 Then Gosub Process_adh_comms

 If Tact1 = 0 Then

 Locate 2 , 1

 Lcd "sending..."

 Gosub Sms_request_balance

 Gosub Wait_for_cmgs

 End If

 If Tact2 = 0 Then Gosub Test_sm1

 If Tact3 = 0 Then Gosub Test_sm2

 If Adh_sms_rcvd_flag = 1 Then

 State = St_sms_received

 Gosub Read_sms

 Gosub Flashled10

 End If

 Wend

 '*************** state st_sms_received ***************

 While State = St_sms_received

 Locate 4 , 1

 Lcd "st=" ; State

 Gosub Split_sms

 Gosub Display_sms_contents

 Gosub Process_sms_txt

 If Adh_sms_rcvd_flag = 0 Then

 State = St_adh_operational

 Gosub Delete_sms

 Gosub Clear_lcd

 End If

 Wend

Loop

End 'end program

759

'**

'************* Subroutines **************

'**

'**************************

Check_for_adh_comms:

 I = Ischarwaiting() 'see if buf has something (when I is 0 then no,

when I is 1 then yes)

 While I = 1 'while chars are there copy to the string

 Bytein = Inkey() 'get one char

 If Bytein > 31 Then 'if printable char

 Adh_message = Adh_message + Chr(bytein) 'add

 End If

 I = Ischarwaiting() 'see if any more

 Set Adh_new_mesg_flag 'flag that our string has something

 Wend 'if no data exit the loop

Return

'**************************

Check_hw_ip_flags:

 Adh_com_pin_flag = Not Adh_command_pin

 Adh_nw_pin_flag = Not Adh_network_pin

Return

'**************************

Reset_status:

 Adh_status = 0

Return

'**************************

Reset_adh_ss_flag:

 Reset Adh_ss_flag

Return

'**************************

Clear_lcd:

 Cls

Return

'**************************

Set_adh_ok_flag:

 Set Adh_ok_flag

Return

'**************************

Reset_adh_ok_flag:

 Reset Adh_ok_flag

Return

'**************************

Display_balance:

 Locate 1 , 12

 Lcd "$" ; Credit_bal_str ; " "

Return

760

'**************************

Adh_full_restart:

 Adh_status = 0

 For I = 5 To 1 Step -1

 Locate 3 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd "Power up ADH in " ; I

 Gosub Display_status

 Wait 1

 Next

 Set Adh_on_key

 For I = 3 To 1 Step -1

 Locate 3 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd "ADH_ON_KEY low:" ; I

 Gosub Display_status

 Wait 1

 Next

 Reset Adh_on_key

 'wait for upto 20 secs

 ' if hw starts ok then exit counting

 I = 20

 Do

 Locate 3 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd "waiting for ADH:" ; I

 Decr I

 Gosub Check_hw_ip_flags

 Gosub Display_status

 If Adh_nw_pin_flag = 1 And Adh_com_pin_flag = 1 Then

 Locate 3 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd "ADH OK"

 Exit Do

 End If

 Wait 1

 Loop Until I = 0

 'this 5 secs was found to be useful if the sim couldnt register

 'as the ADH comes up then drops out after a few secs

 If Adh_nw_pin_flag = 1 And Adh_com_pin_flag = 1 Then

 I = 5

 Do

 Gosub Display_status

 Locate 3 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd "ADH OK:" ; I

 Decr I

 Wait 1

 Loop Until I = 0

 End If

Return

761

'**************************

'just get the bit we want

Split_sms:

 'identify parts of sms by using the commas between them

 Sms_number = "????????"

 Sms_date = "????????"

 Sms_time = "????????"

 Sms_txt = "no message!"

 'get first part of sms - the number

 Temp_b = Instr(1 , Adh_message , ",") 'find the first comma

 If Temp_b = 0 Then Return 'no comma means no message so return

 Temp_b = Temp_b + 2

 Temp_b2 = Instr(temp_b , Adh_message , ",") 'get next comma

 Temp_b2 = Temp_b2 - 2

 Temp_b2 = Temp_b2 - Temp_b

 Incr Temp_b2

 Sms_number = Mid(adh_message , Temp_b , Temp_b2)

 'ignore second part of sms this will most likely be "" , to do this

 'get the next comma after the beginning of the number

 'this will be the end of the number

 'note that when you txt bal to 777 this part contains "Customer Service"

 'increase this by 1 then get the next comma

 Temp_b = Instr(temp_b , Adh_message , ",")

 Incr Temp_b '

 'get 3rd part of sms this will be date (it is 8 characters long)

 Temp_b = Instr(temp_b , Adh_message , ",") 'get next comma

 Temp_b = Temp_b + 2 'get the first char of date

 Temp_20 = Mid(adh_message , Temp_b , 8)

 'change to NZ date format

 Sms_date = Right(temp_20 , 2)

 Sms_date = Sms_date + "/"

 Sms_date = Sms_date + Mid(temp_20 , 4 , 2)

 Sms_date = Sms_date + "/"

 Sms_date = Sms_date + Left(temp_20 , 2)

 'get 4th part of sms this will be time (it is 8 characters long)

 Temp_b = Instr(temp_b , Adh_message , ",")

 Temp_b = Temp_b + 1 'time is 1 on from the comma

 Sms_time = Mid(adh_message , Temp_b , 8)

 'get 5th part of sms this will be contents

 'it starts at 1 after the " after the end of the time

 ' and goes through to 2 characters before the end

 Temp_b = Instr(temp_b , Adh_message , "{034}") 'find the {

 Temp_b = Temp_b + 1

 Temp_b2 = Len(adh_message) 'get the full length

 Temp_b2 = Temp_b2 - Temp_b

 Decr Temp_b2 'exclude OK on the end of the message

 Sms_txt = Mid(adh_message , Temp_b , Temp_b2)

Return

762

'**************************

'put the first 40 characters of any communications from the adh on line 2&3

Display_adh_comms:

 If Adh_new_mesg_flag = 1 Then 'new message

 Locate 2 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd Spc(20)

 Temp_20 = Left(adh_message , 20)

 Locate 2 , 1

 Lcd Temp_20

 Temp_20 = Mid(adh_message , 21 , 20)

 Locate 3 , 1

 Lcd Temp_20

 Waitms Display_delay

 End If

Return

'**************************

Display_sms_contents:

 Cls

 Lcd "from" ; Sms_number

 Locate 2 , 1

 Lcd Sms_time

 Lcd " - " ; Sms_date

 Temp_20 = Left(sms_txt , 20)

 Locate 3 , 1

 Lcd Temp_20

 Temp_20 = Mid(sms_txt , 21 , 20)

 Locate 4 , 1

 Lcd Temp_20

 For I = 1 To 10

 Set Blu_led

 Waitms 250

 Reset Blu_led

 Waitms 750

 Next

Return

'**************************

Adh_echo_off:

 If Adh_echo_flag = 1 Then Return 'already ok then dont do it again

 Adh_message = "" 'clear any previously received data

 Adh_new_mesg_flag = 0 'so prog will wait for new message

 Reset Adh_ok_rcvd_flag 'we will wait for an OK

 Print "ATE0" 'should respond with OK

 I = 0

 Do

 Incr I

 Waitms 100 'give ADH a while to respond

 Gosub Check_for_adh_comms

 If I > 10 Then Return 'took too long to respond

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Gosub Process_adh_comms 'see what came from adh

 If Adh_ok_rcvd_flag = 1 Then

 Set Adh_echo_flag 'got an OK

 Reset Adh_ok_rcvd_flag

 End If

 Gosub Display_status 'show status so far

 Waitms Display_delay 'for debug purposes wait a while

Return

763

'**************************

'when the user presses tact2 it creates a false sms received message

'and sets the adh_new_mesg_flag so st_adh_operational will think an sms has arrived

Test_sm1:

 Adh_message = "+CMTI: {034}SM{034},2"

 Locate 2 , 1

 Lcd "test sms receive:"

 Locate 3 , 1

 Lcd Adh_message

 Wait 2

 Set Adh_new_mesg_flag

Return

Test_sm2:

 Adh_message = "+CMTI: {034}SM{034},3"

 Locate 2 , 1

 Lcd "test sms receive:"

 Locate 3 , 1

 Lcd Adh_message

 Wait 2

 Locate 2 , 1

 Lcd Spc(20)

 Locate 3 , 1

 Lcd Spc(20)

 Set Adh_new_mesg_flag

Return

'**************************

Flashled10:

 For I = 1 To 10

 Set Yel_led : Waitms 100 : Reset Yel_led : Waitms 100

 Next

Return

764

'**************************

Adh_check_regn:

 If Adh_creg_flag = 1 Then Return 'already ok then dont do it again

 Adh_message = "" 'clear any received data

 Adh_new_mesg_flag = 0

 Print "AT+CREG?" 'send the request

 I = 0

 Do

 Incr I

 Waitms 100

 Gosub Check_for_adh_comms

 If I > 10 Then Return 'took too long to respond

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Gosub Process_adh_comms

 Gosub Display_status

 Waitms Display_delay

Return

'**************************

Adh_check_sim:

 If Adh_sim_flag = 1 Then Return 'already ok then dont do it again

 Adh_message = "" 'clear any received data

 Adh_new_mesg_flag = 0

 Print "AT+CPIN?"

 I = 0

 Do

 Incr I

 Waitms 100

 Gosub Check_for_adh_comms

 If I > 10 Then Return

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Gosub Process_adh_comms

 Gosub Display_status

 Waitms Display_delay

Return

'**************************

Adh_check_ss:

 If Adh_ss_flag = 1 Then Return 'already ok then dont do it again

 Adh_message = "" 'clear any received data

 Adh_new_mesg_flag = 0

 Print "AT+CSQ"

 I = 0

 Do

 Incr I

 Waitms 100

 Gosub Check_for_adh_comms

 If I > 10 Then Return

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Gosub Process_adh_comms 'check what we received

 'Gosub Display_status

 Waitms Display_delay

Return

765

'**************************

Adh_set_sms_mode:

 If Adh_sms_mode_flag = 1 Then Return 'already ok then dont do it again

 Adh_message = "" 'clear any received data

 Adh_new_mesg_flag = 0

 Print "AT+CMGF=1" 'text mode

 Waitms 100

 Print "AT+CNMI=2,1,0,0,0" 'mode tells us when sms arrives

 Waitms 100

 Adh_message = "" 'ignore ok responses

 Adh_new_mesg_flag = 0

 Print "AT+CNMI?" 'get mode check

 I = 0

 Do

 Incr I

 Waitms 100

 Gosub Check_for_adh_comms

 If I > 10 Then Return

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Gosub Process_adh_comms 'check what we received

 Gosub Display_status

 Waitms Display_delay

 Adh_message = "" 'ignore ok responses

 Adh_new_mesg_flag = 0

Return

'**************************

'the message from the adh contains time, date, number, and the message

Read_sms:

 Adh_message = ""

 Temp_20 = "at+cmgr=" + Sim_sms_memory

 Print Temp_20

 I = 0

 Do

 Incr I

 Waitms 100 'give ADH a while to respond

 Gosub Check_for_adh_comms

 If I > 10 Then Return 'took too long to respond

 Loop Until Adh_new_mesg_flag = 1 'wait for answer

 Reset Adh_sms_rcvd_flag

 'check for error here ?

Return

766

'**************************

'what should happen when a specific sms is received

Process_sms_txt:

 'look for a balance

 Temp_b = Instr(sms_txt , "Bal:")

 If Temp_b > 0 Then 'got an sms with Bal in it

 Temp_b = Temp_b + 5 'starting pt for amount

 Temp_b2 = Instr(temp_b , Sms_txt , ".") 'find decimal pt

 Temp_b2 = Temp_b2 + 2 'place of last digit of the amount

 Temp_b2 = Temp_b2 - Temp_b

 Incr Temp_b2 'number of digits to get

 Credit_bal_str = Mid(sms_txt , Temp_b , Temp_b2)

 'convert string to number

 Temp_20 = Credit_bal_str

 Temp_b = Instr(credit_bal_str , ".")

 Delchar Temp_20 , Temp_b 'remove decimal pt

 Credit_bal_cents = Val(temp_20) 'convert to word var

 If Credit_bal_cents > 100 Then 'more than a dollar

 Set Credit_bal_flag

 Else

 Reset Credit_bal_flag

 End If

 End If

Return

'**************************

Sms_request_balance:

 Sms_txt = "bal"

 Sms_number = "777"

 Print "at+cmgs={034}" ; Sms_number ; "{034}"

 Waitms 50

 Print Sms_txt

 Waitms 50

 Print "{026}"; 'send Ctrl-Z suppress crlf

 Waitms 50

Return

'**************************

'check the sms was sent

Wait_for_cmgs:

 Reset Adh_error_flag 'no error

 I = 0

 Do

 Incr I

 Gosub Check_for_adh_comms 'read anything from adh

 Temp_b = Instr(adh_message , "+CMGS:") 'see if we got cmgs

 Waitms 100

 If I > 100 Then 'no response in time

 Set Adh_error_flag

 Return

 End If

 Loop Until Temp_b > 0 'once we have got cmgs it will exit

Return

'**************************

Delete_sms:

 Print "at+cmgd=" ; Sim_sms_memory

 Cls

 Lcd "deleting message " ; Sim_sms_memory

 Wait 5

Return

767

'**************************

'check what was received from the adh

Process_adh_comms:

 If Instr(adh_message , "OK") > 0 Then

 Set Adh_ok_rcvd_flag

 End If

 If Instr(adh_message , "+CREG: 0") > 0 Then

 Reset Adh_creg_flag

 End If

 If Instr(adh_message , "+CREG: 1") > 0 Then

 Set Adh_creg_flag

 Set Adh_alive_flag 'make sure it is set

 End If

 If Instr(adh_message , "+CREG: 3") > 0 Then

 Reset Adh_creg_flag

 End If

 If Instr(adh_message , "+CMGS") > 0 Then

 Set Adh_sim_flag

 End If

 If Instr(adh_message , "+CPIN: READY") > 0 Then

 Set Adh_sim_flag

 End If

 'find the position of the signal strength in the string

 Temp_b = Instr(adh_message , "CSQ:")

 If Temp_b > 0 Then

 Temp_b = Temp_b + 5

 Sig_str = Mid(adh_message , Temp_b , 2)

 If Instr(sig_str , ",") > 0 Then 'SS is single digit

 Sig_str = Mid(adh_message , Temp_b , 1)

 Sig_str = "0" + Sig_str

 End If

 If Sig_str = "99" Or Sig_str = "00" Then

 Adh_ss_flag = 0 'no sig

 Else

 Adh_ss_flag = 1 'ok sig

 End If

 End If

 'check that sms mode is ok

 Temp_b = Instr(adh_message , "+CNMI:")

 If Temp_b > 0 Then

 Temp_b = Temp_b + 7 'get indx of part we want

 Temp_str = Mid(adh_message , Temp_b , 3)

 If Temp_str = "2,1" Then

 Set Adh_sms_mode_flag

 Else

 Reset Adh_sms_mode_flag

 End If

 End If

 'received an sms

 Temp_b = Instr(adh_message , "+CMTI:") 'see if within message

 If Temp_b > 0 Then 'yes it is

 Temp_b = Temp_b + 12 'ignore first part

 Message_len = Len(adh_message) 'find end of message

 Incr Message_len 'or we get wrong part

 Message_len = Message_len - Temp_b 'get the number of chars in sim mem

address

768

 'Sim_sms_memory = Mid(adh_message , Temp_b , Message_len) 'get the address in

sim memory

 Sim_sms_memory = Right(adh_message , Message_len)

 Reset Adh_new_mesg_flag 'got the new message

 Set Adh_sms_rcvd_flag 'it is an sms so move to process it

 End If

Return

'**************************

'in operational state

'puts simple single status on LCD

Display_adh_operational:

 Locate 1 , 1

 Lcd "ADH cell"

 Locate 1 , 20

 If Adh_ok_flag = 1 Then

 Lcd Chr(0) 'good

 Else

 Lcd Chr(1) 'bad

 End If

 'show timer

 Locate 4 , 8

 If Adh_ok_flag = 1 Then

 If Min_count < 10 Then Lcd "0"

 Lcd Min_count ; ":"

 If Sec_count < 10 Then Lcd "0"

 Lcd Sec_count

 Else

 Lcd "--:--"

 End If

 'show signal strength

 Locate 4 , 16

 Lcd "SS=" ; Sig_str

 'show state

 Locate 4 , 1

 Lcd "st=" ; State

Return

'**************************

Adh_check_all_ok:

 Temp_w = Adh_status And &B1111111100000000 'get just the first 8 bits

 If Temp_w = &B1111111100000000 Then

 Gosub Set_adh_ok_flag

 End If

Return

769

'**************************

'in down and checking states

'puts the full status on the LCD

Display_status:

 Locate 1 , 5

 If Adh_com_pin_flag = 1 Then

 Lcd "C"

 Else

 Lcd "-"

 End If

 If Adh_nw_pin_flag = 1 Then

 Lcd "N"

 Else

 Lcd "-"

 End If

 If Adh_alive_flag = 1 Then

 Lcd Chr(5)

 Else

 Lcd "-"

 End If

 If Adh_creg_flag = 1 Then

 Lcd Chr(4)

 Else

 Lcd "-"

 End If

 If Adh_sim_flag = 1 Then

 Lcd Chr(3)

 Else

 Lcd "-"

 End If

 If Adh_ss_flag = 1 Then

 Lcd "S"

 Else

 Lcd "-"

 End If

 If Adh_echo_flag = 1 Then

 Lcd "E"

 Else

 Lcd "-"

 End If

 If Adh_sms_mode_flag = 1 Then

 Lcd "M"

 Else

 Lcd "-"

 End If

 If Adh_$_flag = 1 Then

 Lcd "$"

 Else

 Lcd "-"

 End If

 'display overall status

 Locate 1 , 20

 If Adh_ok_flag = 1 Then

 Lcd Chr(0)

 Else

 Lcd Chr(1)

 End If

 'show state

 Locate 4 , 1

 Lcd "st=" ; State

Return

770

'**

'********* Interrupt Routines **********

'**

'Timer1 interrupt service routine - program comes here automatically every 1Second

Timer1_1s_isr:

 Timer1 = T1_preload

 Incr Sec_count

 If Sec_count > 59 Then

 Sec_count = 0

 Incr Min_count

 End If

Return

Reset_min_count:

 Min_count = 0

Return

771

54 Data transmission across the internet
(its all about understanding layers!!!)

Ogres are like onions.

-They stink?
Yes. No!
-Oh, they make you cry.

No!. . .Layers. Onions have layers. Ogres have layers.
Onions have layers. You get it? We both have layers.

-Oh, you both have layers. Oh. You know, not
everybody likes onions.

Shrek, 2001

Here is a very simple network, 2 computers communicating in our classroom, one is a client

PC and the other is the local web server.

A switch is a device that connects
together two computers that both talk
Ethernet.

Important point: Data does not go directly between the applications on the two computers!
Firefox doesn’t talk directly to Apache, there are a number of layers that data is converted through
that make the system flexible for all the applications that run on computers, e.g. accessing mail, file
sharing, getting the time, streaming music videos, playing games etc.

Because some of these applications are so incredibly different a simple conversion to one common
layer is not enough so there are a numbers of layers in use in the PC.

The whole set of internet protocols that allow communication is called the Internet Protocol Suite.

Important point: When two applications do talk to each other they have to talk the same
language; e.g. Apache and Firefox (also Chrome and IE) talk in HTTP – hyper text transport protocol.

PC

Application:
Firefox

Application:
Apache

Server

When you interact with a network what actually happens?

Switch

772

The HTTP is converted to the TCP (transmission control protocol) layer by programs in the operating
system which are part of the TCP/IP stack. TCP is then converted to IP (internet protocol).

54.1 IP address

Our web client (Firefox, IE,
Chrome) asks the OS
(operating system) of its PC
(with IP address
192.168.0.14) to get a web
page from the server (with
IP address 192.168.0.254).
IP addresses must be
unique for each computer
on the same network.
Humans often allocate and
use IP addresses when
they refer to computers on
a network. Computers,
however don’t know each
other by IP they use the...

54.2 MAC (physical) address

Computers know each other by attaching their IP address to the MAC (media access layer) of your
network card. You can check out the ip and mac addresses of your network card on a PC by
selecting START and RUN and typing in CMD and then typing into the command window -
ipconfig/all. MAC addresses are unique for every network card ever made and are assigned by the
manufacture. We might change the IP of a computer but not the MAC address.

The PC keeps track of the IP and MAC address of computers around it in a table using ARP (address
resolution protocol). Type ARP –a into the command window to check out what other devices
(PCs/routers....) that your PC can see.

Switch/Hub

TCP

IP
192.168.0.14

MAC
00:9d:4e:67:01:5c

TCP

IP
192.168.0.254

MAC
00:45:a6:f4:53:21

Application:
Firefox

(talks HTTP)
Application:

Apache
talks HTTP

Server
PC

773

The PC shown in the previous window has two Ethernet adapters, one is wireless and one is wired.
Only one is connected and has an IP, the other is not used at all so has no IP assigned to it. Both
however have MAC addresses as the MAC address is a permanent ID for the hardware, whereas IPs
can be changed.

 Ethernet is the name of the protocol for moving data between PCs on the same hub or switch and
specifies such things as what wires do what and what voltages are present. Having multiple layers to
communications means that applications can be simpler because they don’t have to know everything
about the layers below such as about voltage and wires or IP just http to TCP.

54.3 Subnet mask

When you setup the IP of a network card, you set the subnet mask as well. If you want computers on
the same switch to see each other the subnet mask must be the same, e.g. 255.255.255.0 as in the
previous window.

54.4 Ping

Type in ping and the ip of the computer that you want to check communications with.

Ping is an application on your computer, it communicates with another computer using ICMP
(internet control message protocol) which is used by operating systems to manage messaging errors
between computers. In the picture of the layers you can see that ping doesn’t talk using TCP it uses
ICMP. On the other computer there is no application above ICMP it answers pings itself.

Switch/Hub

IP
192.168.0.14

MAC
00:9d:4e:67:01:5c

PC

Application:
Ping

Server

IP
192.168.0.254

MAC
00:45:a6:f4:53:21

ICMP
ICMP

774

54.5 Ports

There is always more than one application on a PC wanting network access; we have email, web
browsers, time synchronisation and many others. Attached to each IP are 65,536 different ports that
can be used, many of them are dedicated to certain applications, here are three.

Some of the applications require two way data transmission , like web browsing and email. Some like
Time and Shoutcast and VoIP are really only one way. Two way applications run on TCP, one way
applications can run using UDP.

54.6 Packets

Having two different protocols, TCP and UDP, on the same layer is useful and necessary.

Sometimes it doesn’t matter if a bit of data gets lost and sometimes it does. When a web page is
sent, TCP breaks it up into chunks called packets and attaches a sequence number to each packet, if
a packet gets lost across the network then TCP on the receiving computer responds with a message
to resend the packet that was lost.

However if you are listening to the radio over the network and some data goes missing you don’t want
it sent again so it goes via UDP (user datagram protocol), which means that we don’t resend lost
packets, just ignore them.

Switch/Hub

Mail Server
POP3: port 110

Apache
HTTP: port 80

Time Server
NTP: port 123

MAC
00:9d:4e:67:01:5c

MAC
00:45:a6:f4:53:21

IP
192.168.0.14

TCP

IP
192.168.0.254

TCP

Time Application
NTP: port 123

Firefox
HTTP: port 80

Thunderbird
POP3: port 110

UDP
UDP

Server

PC

Ethernet Ethernet

775

54.7 Gateway

There are different ways of connecting to the internet a popular way is via broadband using ADSL.

A switch is ok for connecting computers via Ethernet however Ethernet only works for short
distances, so other technologies are necessary to transport data long distances over the internet.

A gateway translates one type of data protocol to another e.g. Ethernet to ADSL.

A gateway has two IP addresses one for the LAN (local area network) and one for the WAN (wide
area network). If you are setting up a small network at home then you don’t worry about your gateway
IP on the internet, your ISP (internet service provider) has hardware that gives you one automatically
when your modem logs in. You just set up your gateway address on each computer on your LAN.

When you open a web browser you don’t have to worry about any of this because TCP handles it all
for you. Its only when you want to build servers and things that you really get into it.

Apache
HTTP: port 80

TCP

IP
10.20.15.67

Server

MAC
00:45:a6:f4:53:21

10.20.15.1

Gateway Device

Firefox
HTTP: port 80

TCP

PC

MAC
00:9d:4e:67:01:5c

IP
192.168.0.14

Ethernet

Gateway Device
ADSL Modem

192.168.1.1

internet

ADSL
203.184.25.218

202.180.81.31

776

You can see your actual ip on the internet by going to a site like www.whatismyipaddress.com. Or
open the status page of your modem.

Better still go to www.grc.com and find Shieldsup and test the firewall of your modem, a firewall
protects (opens/closes/hides) ports on your modem through which other devices can get into your
network.

http://www.grc.com/

777

54.8 DNS

Even though computers may work on numbers humans do not, we like to use names for websites on
the internet like www.techideas.co.nz or www.mcselec.com

When you type www.techideas.co.nz into a computer it has to find the ip address for it. On the status
page for your modem is the IP address of the DNS (domain name system) server on the internet
(usually at your ISP) that will help you. Normally your modem gets the IP for the DNS server
automatically when it logs on to your ISP. It is such an important hing that you generally have access
to at least 2 of them as they can get busy.

When you want a website,
your computer asks the
DNS server for the IP of
the website, then your PC
asks the server at that IP
address for a web page.

internet

PC

MAC
00:9d:4e:67:01:5c

IP
192.168.0.14

Firefox
HTTP: port 80

TCP

Gateway Device
ADSL Modem/Router

Apache
HTTP: port 80

TCP

Gateway Device

MAC
00:45:a6:f4:53:21

IP
10.20.15.67

Server

10.20.15.1

DNS
Server

UDP

IP
10.20.11.118

MAC
00:78:95:f6:BA:F1

10.20.11.3

202.180.64.10

202.180.81.31

Ethernet

ADSL
ADSL

Ethernet

192.168.1.1

203.184.25.218

IP
192.168.0.14

PC
DNS server at 10.20.11.118

what's the IP for mcselec.com?

DNS Server

IP
10.20.11.118

www.mcselec.com
94.75.235.37

GET 94.75.235.37

It is 94.75.235.37

http://www.techideas.co.nz/
http://www.mcselec.com/

778

54.9 WIZNET812

We are going to build a small webserver using an AVR and
put it on the internet so that we can control things from
anywhere around the world.

There are a number of ways of implementing a network
device but using the Wiznet812 is definitely one of the
easiest. It has all the TCP/IP stack (protocols) built into it.
You just have to configure its IP and MAC addresses and
then talk to it (sounds simple sorry it’s not!!)

System Block Diagram

Our first Ethernet application will be to get a simple Ping working.
Note that all that is needed for a ping is to configure the Wiznet, the TCP/IP protocol stack is
configured within the Wiznet, you don’t have to write much of a program for this to happen.

Much of the code that follows was written based upon the most excellent work from
http://members.home.nl/bzijlstra/

internet

779

Circuit diagram

The wiznet requires a 3V3 power supply, its pins are however tolerant of 5V so the Wiznet will run off 3V3 and the micro and LCD off 5V

780

Wiznet ping program
'--
'Title Block
'
' Date: July 09
' File Name: wiz812_Ping_v1
'--
'Program Description:
' Atmega8535, char LCD and wiz812MJ PING program
'--
'Compiler Directives (these tell Bascom things about our hardware)
$regfile = "m8535.dat"
$crystal = 8000000
$hwstack = 64
$swstack = 64
$framesize = 64

'--
'Hardware Setups
'Hardware Alias
Wiz812_cs Alias Portb.2 'Chipselect wiz812
Wiz812_ss Alias Portb.4
Wiz812_int Alias Pinb.1 'INT of wiz812
Wiz812_res Alias Portb.3 'Reset of wiz812

'configure hardware
Config Wiz812_cs = Output
Config Wiz812_ss = Output
Config Wiz812_int = Input
Config Wiz812_res = Output

'Configuration of the SPI-bus
Config Spi = Hard , Interrupt = Off , Data Order = Msb , Master = Yes , Polarity = Low , Phase = 0 ,
Clockrate = 4 , Noss = 0

'--
'Declare Constants – registers within the wiznet that tell it what to do.
Const Wiz812_modereg = &H0000 'Mode register

Const Wiz812_gw0 = &H0001 'Gateway address
Const Wiz812_gw1 = &H0002
Const Wiz812_gw2 = &H0003
Const Wiz812_gw3 = &H0004

Const Wiz812_subnet0 = &H0005 'Subnet mask
Const Wiz812_subnet1 = &H0006
Const Wiz812_subnet2 = &H0007
Const Wiz812_subnet3 = &H0008

Const Wiz812_mac0 = &H0009 'Source Hardware Address
Const Wiz812_mac1 = &H000A
Const Wiz812_mac2 = &H000B
Const Wiz812_mac3 = &H000C
Const Wiz812_mac4 = &H000D

781

Const Wiz812_mac5 = &H000E

Const Wiz812_ip0 = &H000F 'Source IP Address
Const Wiz812_ip1 = &H0010
Const Wiz812_ip2 = &H0011
Const Wiz812_ip3 = &H0012

'--
'Declare Variables
Dim Value As Byte
Dim Address As Word
Dim Address_lo As Byte At Address Overlay
Dim Address_hi As Byte At Address + 1 Overlay
Dim Wiz812_rd_code As Byte
Dim Wiz812_wr_code As Byte

'Initialise Variables
 Wiz812_rd_code = 15
 Wiz812_wr_code = 240

'--
'Declare subroutines
Declare Sub Wiz812_init
Declare Sub Wiz812_read(byval Register As Word)
Declare Sub Wiz812_write(byval Register As Word , Byval Value As Byte)
Declare Sub Wiz812_reset

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs
= Portc.0
Config Lcd = 20 * 4 'configure lcd screen

'--
'Program starts here

Spiinit 'Initialise the spi bus

Call Wiz812_init 'We initialize the wiz812
Cls

Do
 Gosub Display_setup 'Just print the configuration on the LCD
Loop
End

'--
Display_setup:
 Call Wiz812_read(wiz812_ip0)
 Locate 1 , 1
 Lcd Value
 Call Wiz812_read(wiz812_ip1)
 Locate 1 , 5
 Lcd Value

782

 Call Wiz812_read(wiz812_ip2)
 Locate 1 , 10
 Lcd Value
 Call Wiz812_read(wiz812_ip3)
 Locate 1 , 15
 Lcd Value

 Call Wiz812_read(wiz812_subnet0)
 Locate 2 , 1
 Lcd Value
 Call Wiz812_read(wiz812_subnet1)
 Locate 2 , 5
 Lcd Value
 Call Wiz812_read(wiz812_subnet2)
 Locate 2 , 10
 Lcd Value
 Call Wiz812_read(wiz812_subnet3)
 Locate 2 , 15
 Lcd Value

 Call Wiz812_read(wiz812_gw0)
 Locate 3 , 1
 Lcd Value
 Call Wiz812_read(wiz812_gw1)
 Locate 3 , 5
 Lcd Value
 Call Wiz812_read(wiz812_gw2)
 Locate 3 , 10
 Lcd Value
 Call Wiz812_read(wiz812_gw3)
 Locate 3 , 15
 Lcd Value

 Call Wiz812_read(wiz812_mac0)
 Locate 4 , 1
 Lcd Hex(value)
 Call Wiz812_read(wiz812_mac1)
 Locate 4 , 4
 Lcd Hex(value)
 Call Wiz812_read(wiz812_mac2)
 Locate 4 , 7
 Lcd Hex(value)
 Call Wiz812_read(wiz812_mac3)
 Locate 4 , 10
 Lcd Hex(value)
 Call Wiz812_read(wiz812_mac4)
 Locate 4 , 13
 Lcd Hex(value)
 Call Wiz812_read(wiz812_mac5)
 Locate 4 , 16
 Lcd Hex(value)
Return

783

'--
Sub Wiz812_init
 Call Wiz812_reset 'Hardware reset
 'Register reset
 Call Wiz812_write(wiz812_modereg , &H80)
 'Set static IP
 Call Wiz812_write(wiz812_ip0 , 192)
 Call Wiz812_write(wiz812_ip1 , 168)
 Call Wiz812_write(wiz812_ip2 , 1)
 Call Wiz812_write(wiz812_ip3 , 114)
 'Set Subnet mask
 Call Wiz812_write(wiz812_subnet0 , 255)
 Call Wiz812_write(wiz812_subnet1 , 255)
 Call Wiz812_write(wiz812_subnet2 , 255)
 Call Wiz812_write(wiz812_subnet3 , 0)
 'Set gateway IP address
 Call Wiz812_write(wiz812_gw0 , 0)
 Call Wiz812_write(wiz812_gw1 , 0)
 Call Wiz812_write(wiz812_gw2 , 0)
 Call Wiz812_write(wiz812_gw3 , 0)
 'Set MAC to any unique number
 Call Wiz812_write(wiz812_mac0 , &H90)
 Call Wiz812_write(wiz812_mac1 , &HA1)
 Call Wiz812_write(wiz812_mac2 , &HB2)
 Call Wiz812_write(wiz812_mac3 , &HC3)
 Call Wiz812_write(wiz812_mac4 , &HD4)
 Call Wiz812_write(wiz812_mac5 , &HE5)
End Sub

'--
Sub Wiz812_read(register)
 Address = Register
 Reset Wiz812_cs
 Spiout Wiz812_rd_code , 1
 Spiout Address_hi , 1
 Spiout Address_lo , 1
 Spiin Value , 1
 Set Wiz812_cs
End Sub

'--
Sub Wiz812_write(register , Value)
 Address = Register
 Reset Wiz812_cs
 Spiout Wiz812_wr_code , 1
 Spiout Address_hi , 1
 Spiout Address_lo , 1
 Spiout Value , 1
 Set Wiz812_cs
End Sub

784

'--
Sub Wiz812_reset
 Wiz812_res = 1
 Waitms 10
 Wiz812_res = 0
 Waitms 30
 Wiz812_res = 1
End Sub
'--

785

54.10 Wiznet 812 Webserver V1

To setup a webserver also involves understanding a bit about http communication that takes place
between a browser and a server.

The browser (client) sends a GET to the server and then the server sends its webpage

A message from a browser is made up of two parts a header and a body.
The initial request is a GET message which has no body just a header and at least 2CRLF’s
(carriage return, line feeds) on the end.

CR & LF codes are stored in a document or sent in a message to signify to return to the beginning of
the line (CR-carriage return) and go to the next line down (LF-line feed). The ASCII code for CR is 13
or &H0D, the code for LF is 10 or &H0A. A browser sends a CRLF at the end of each line and after
the end of the last line a second CRLF to indicate the break between the header and any body. It
also sends a CRLF at the end of the body.

The actual GET message is a text message like this from Firefox

GET / HTTP/1.1
Host: 192.168.1.73
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.8) Gecko/20100722 Firefox/3.6.8 (.NET CLR
3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: Close
CRLF
CRLF

And from intenet explorer it is:
GET / HTTP/1.1
Accept: image/gif, image/jpeg, image/pjpeg, image/pjpeg, application/x-shockwave-flash, application/x-ms-application,
application/x-ms-xbap, application/vnd.ms-xpsdocument, application/xaml+xml, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, application/x-silverlight, */*
Accept-Language: en-nz
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729; InfoPath.2)
Accept-Encoding: gzip, deflate
Connection: Close
Host: 192.168.1.73
CRLF
CRLF

786

When understanding the program code for a webserver you start from when the web browser sends a
GET and the server receives it.

The server software must wait for data and then check that the header is complete, it knows it is
complete when it finds two CRLF in a row. If that happens it sends its webpage to the client browser.
Important point: program flags
In our program when the complete header is detected a flag is set (a single bit in a byte sized
variable); afterwards in a later part of the program the flag can be checked to action something else.
As our code becomes more complex, more flags will be necessary.

The Wiznet812 is based around the WIZ5100 IC which has a large memory to store data that it
receives and data that you want it to send. Reasonable size memories are required because there
are often significant size data transfers involved: e.g. the GET header was 386 bytes.

&H0000

&H002F

Common registers

&H0400

&H07FF

Socket registers

&H4000

&H5FFF

TX Memory (8K)

&H6000

&H7FFF

RX Memory(8K)

 Wiz received data? N

Y

 Header complete? Y

N

 flag1 ? N
Y

send the webpage
to the browser

send webpage

web
browser

GET

set flag1

open connection and listen

787

Here is a webpage which has been served by the wiznet

When text is entered into the textbo and enter is pressed the following HTTP header and body are
sent (header in green and body in red).

POST / HTTP/1.1
Host: 192.168.1.73
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.8) Gecko/20100722
Firefox/3.6.8 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
Referer: http://192.168.1.73/
Content-Type: application/x-www-form-urlencoded
Content-Length: 43

TEXT2SEND=Hello world, is anyone there?

788

It is a POST so the webpage is not getting something from the server it is sending it to the server.

The server software must loop through the header to find the end of the header (marked by two
CRLF), then it extracts the content length and using this value gets that number fo characters from
the body.

There is a limitation with Bascom-AVR though which really complicates our program. Bascom is set
up to handle strings of a maximum of 254 characters in length yet the simple GET header was almost
400 characters and the POST header is over 500 characters.

To read an HTTP header we only grab 200 characters at a time from the wiznet and check these for
the CRLF CRLF end of header. When we have this we set a flag _flag.2)

A complication exists though as we do not want to get blocks of 200 characters at a time and find that
an important piece of data was cut. We would loose important content doing that. So an overlap
process is used with the buffer to avoid cutting important words or phrases up.
The first read is from 1 to 200, the second from 150 to 249, the third from 200 to 249 and so on

789

 Wiz received data? N

Y

get 150 chartacters

 got all chars ? Y

N
set flag2

send request

set flag1

 Header complete? Y
N

 flag 2? N

Y

 flag1 ? N
Y

send the webpage
to the browser

web
browser

send webpage

790

54.11 Transmitting data

There can be a lot of data to send when it comes to web pages, and we have a limited resource of
memory available in the wiznet to store and send this data. A data structure called a queue or buffer
is required to manage the sending of the data and the holding of it until it can be sent. It is a FIFO
(first in first out) queue.

Imagine a major bus station, it has a
300metre long platform where a lot of
passengers have to transfer from one
bus to another; except the busses run
at slightly different schedules. At a
normal bus stop the people join the end
of the queue and as people get on the
first available bus the whole queue
moves forward, just like people waiting
at a supermarket checkout or a bank
ATM.

791

However at a busy bus platform that is 300metres long we don’t want the people to shuffle all the way
down the platform to catch the outgoing bus. Everyone would get really cross with having to pick up
their parcels and move every few seconds and then wait, then move, then wait a bit more…
So we have the bus drivers drop people off at the end of the queue and the people wait in one spot,
then the outgoing bus drivers pick up people at the front of the queue.

The first pictures above are clear, the queue grows down the platform. But as we get to the end of the
platform it is clear that we cannot drop off the new passengers as there is no room, so the bus driver
drops them off at the other end of the platform.

Memory in a computer is a bit like the bus platform, it is of limited length(size) so if we add data to the
end of ram, eventually we must run out and then we need to start our queue from the beginning
again.

792

In the wiznet there are two pointers used to manage the head and tail of the buffer or queue. We are
going to add the contents of the AVR ram buffer into the wiznet buffer.

When inserting the new contents into the wiznet buffer, the program first reads the pointer
soc0_tx_wr_ptr which tells it where to start copying into the buffer, it then copies the data from that
point , then calculates the new value for soc0_tx_wr_ptr by adding the length of the new data to it and
finally writes the new value into the pointer.
e.g.
soc0_tx_wr_prtr contains the address &H413E
AVR data = “<html><head><meta http-equiv={034}PRAGMA{034} Content={034}NO-CACHE{034}/>”
Data length is 74 characters = &H4A
new value for soc0_tx_wr_ptr = &H413E + &H41 = &H4188

The wiznet maintains a second memory pointer soc0_tx_rd_ptr which it uses to read the memory
content from the head of the queue.

As data is transmitted across the network the rd_ptr moves towards the wr_ptr, the wiznet stops
sending when the two pointers are the same as it has then sent all the data in its buffer.

The wiznet has a freesize register as well which can be read at anytime to find out how much tx buffer
memory is available.

AVR data to be inserted

buffer
contents

3. write the pointer

WIZ 2-Kbyte buffer

1. read the
pointer

2. pointer = pointer + data length
4. tell wiz to transmit

buffer
contents

WIZ 2-Kbyte Circular Memory

wr_ptrrd_ptr

793

The program reads data from the end of the program line by line; each new line replaces the old one
in the buffer (the buffer does not get longer).

After this the entire buffer is copied into the memory at the next location after the last.

After each copy into memory the tx_wr_ptr is set to the new value at the end of the buffer contents
and and the wiz sends the data onto the network.

At the end of WIZnet memory the buffer may be split up and wraps to the beginning again, just like at
the bus station.

AVR data (1)

AVR data (3)

buffer
contents

buffer
contentsbuffer

contents

WIZ 2-Kbyte buffer

AVR data(2)

split buffer

&H4800

start over from &H4000

&H4000

split buffer
contents

split buffer
contents

WIZ 2-Kbyte Circular Memory

When ther buffer over runs memory the remaining part
is inserted at the beginning of memory

794

Wiznet812 server program Ver 1

'--
'Title Block
' Date: July 09
' File Name: WebServ_V1
'--
'Program Description:
' AtMega16, char LCD and w812MJ Webserver
'--
'Compiler Directives (these tell Bascom things about our hardware)
$regfile = "m16def.dat"
$crystal = 8000000
$baud = 9600
$hwstack = 60
$swstack = 60
$framesize = 80

'--
'Hardware Setups
'Hardware Alias
w812_cs Alias Portb.2 'Chipselect w812
w812_ss Alias Portb.4
w812_int Alias Pinb.1 'INT of w812
w812_res Alias Portb.3 'Reset of w812

'configure hardware
Config w812_cs = Output
Config w812_ss = Output
Config w812_int = Input
Config w812_res = Output

'Configuration of the SPI-bus
Config Spi = Hard , Interrupt = Off , Data Order = Msb , Master = Yes , Polarity = Low , Phase = 0 ,
Clockrate = 4 , Noss = 0

'lcd
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 ,
Rs = Portc.0
Config Lcd = 20 * 4 'configure lcd screen
'--
'Declare subroutines
Declare Function w812_receive_check() As Byte
Declare Sub w812_send_webpage
Declare Sub W812_send_buffer
Declare Sub w812_init
Declare Sub w812_reset
Declare Sub w812_cycleport
Declare Function W812_readb(byval Register As Word) As Byte
Declare Function W812_readw(byval Register_h As Word) As Word
Declare Sub W812_writeb(byval Register As Word , Byval Dat As Byte)
Declare Sub W812_writew(byval Register_h As Word , Byval Dat As Word)

795

'--
'Declare Constants
Const w812_modereg = &H0000 'Mode register

Const w812_gw0 = &H0001 'Gateway address
Const w812_gw1 = &H0002
Const w812_gw2 = &H0003
Const w812_gw3 = &H0004

Const w812_subnet0 = &H0005 'Subnet mask
Const w812_subnet1 = &H0006
Const w812_subnet2 = &H0007
Const w812_subnet3 = &H0008

Const w812_mac0 = &H0009 'Source Hardware Address
Const w812_mac1 = &H000A
Const w812_mac2 = &H000B
Const w812_mac3 = &H000C
Const w812_mac4 = &H000D
Const w812_mac5 = &H000E

Const w812_ip0 = &H000F 'Source IP Address
Const w812_ip1 = &H0010
Const w812_ip2 = &H0011
Const w812_ip3 = &H0012

Const W812_s0_modereg = &H0400
Const w812_s0_commandreg = &H0401
Const w812_s0_intr = &H0402
Const w812_s0_status = &H0403
Const w812_s0_porth = &H0404
Const w812_s0_portl = &H0405
Const w812_s0_destip_1 = &H040C
Const w812_s0_destip_2 = &H040D
Const w812_s0_destip_3 = &H040E
Const w812_s0_destip_4 = &H040F
Const w812_s0_txfreesizeh = &H0420
Const w812_s0_txfreesizel = &H0421
Const w812_s0_txrdptrh = &H0422
Const w812_s0_txrdptrl = &H0423
Const w812_s0_txwrptrh = &H0424
Const w812_s0_txwrptrl = &H0425
Const w812_s0_rxsizeh = &H0426
Const w812_s0_rxsizel = &H0427

Const Buffersize = 254

'--
'Declare Variables
Dim Buffer As String * Buffersize
Dim Rx_flag As Byte
Dim W812_rd_code As Byte
Dim w812_wr_code As Byte
Dim Soc0_status As Byte

796

'Initialise Variables
W812_rd_code = 15
W812_wr_code = 240

'--
 'program starts here
Cls
Lcd " w812 Server "
Spiinit 'Initialise the spi pins
Call w812_init 'initialize w812
Do
 Soc0_status = w812_readb(w812_s0_status) ''find state of socket
 If Soc0_status = &H0 Or Soc0_status = &H1C Then
 Call w812_cycleport() 'try to open socket
 End If
 Rx_flag = w812_receive_check() 'see if anything received
 If Rx_flag.1 = 1 Then 'full header found
 Call w812_writeb(w812_s0_commandreg , &H40)
 Call w812_send_webpage() 'send out the webpage
 End If
Loop
End

'--
Sub w812_send_webpage
 Local Char As Byte
 'fill buffer with lines from the data at end of the program and send them
 Restore Served_webpage 'start from data beginning
 Print "-------------starting to send webpage----------------------"
 Do
 Print "--------"
 Read Buffer 'get data line by line from below
 If Buffer = "SEND_CLIENT_IP" Then ' insert the client IP-address
 Char = W812_readb(w812_s0_destip_1) 'in the web page
 Buffer = Str(char) + "." 'empty buffer to start with
 Char = W812_readb(w812_s0_destip_2)
 Buffer = Buffer + Str(char) + "."
 Char = W812_readb(w812_s0_destip_3)
 Buffer = Buffer + Str(char) + "."
 Char = W812_readb(w812_s0_destip_4)
 Buffer = Buffer + Str(char)
 End If
 If Buffer = "END_OF_WEB_PAGE" Then 'Look for the end of a webpage
 Exit Do
 End If
 Call W812_send_buffer 'send the buffer
 Loop
 'finished sending so disconnect
 Call w812_writeb(w812_s0_commandreg , &H8)
End Sub

'--

797

'check to see if the wiz has received any data
' if a full header has been received set flag.1
Function w812_receive_check() As Byte
 Local Temp As Word , I As Word , J As Word , Flag As Byte , _status As Byte
 Local Contentpos As Word , Top As Word , Addr_ptr As Word , Rx_count As Word
 Local Complete_header As String * 4 , Char As Byte
 Buffer = ""
 Complete_header = Chr(13) + Chr(10) + Chr(13) + Chr(10) 'gap between header and body
 Contentpos = 0
 Addr_ptr = 0
 Flag = 0

 _status = W812_readb(w812_s0_status)
 If _status = &H17 Then 'check if connected first
 'Check for new data received by wiz
 Rx_count = W812_readw(w812_s0_rxsizeh)

 If Rx_count > 0 Then 'received something
 I = &H6000
 J = &H6000 + 200
 While Flag.2 = 0 'for all received data
 'get 200 characters at a time from wiz
 Buffer = "" 'empty the buffer
 Rx_count = Rx_count - 1
 Top = &H6000 + Rx_count
 Top = Top + 3
 For Addr_ptr = I To J
 If Addr_ptr < Top Then 'not at end yet
 Char = W812_readb(addr_ptr) 'get a byte from wiz
 Buffer = Buffer + Chr(char) 'store ascii char in buffer
 Else
 Flag.2 = 1 'reached the end
 End If
 Next
 Temp = Instr(buffer , Complete_header)
 If Temp > 0 Then Flag.1 = 1 'full header and body
 I = I + 150 'slide up the buffer 150 chars
 J = J + 150 'slide up the buffer 150 chars
 Wend
 End If
 End If
 w812_receive_check = Flag
End Function

798

'--
‘copies contents of the buffer into tx_mem and tells wiz to send it
Sub W812_send_buffer
 Local _tx_wr_ptr As Word , _bufferlength As Integer , _tx_freesize As Word
 Local _tx_mem_offset_low As Word , _tx_mem_offset_high As Word , _tx_mem_ptr As Word
 Local _lower_buffer As Word , _str As String * 1 , _char As Byte , _i As Byte
 _bufferlength = Len(buffer) 'length of data to send

 '1. wait until wiz has enough memory available to insert the full contents of the buffer
 Do
 _tx_freesize = W812_readw(w812_s0_txfreesizeh)
 Loop Until _tx_freesize > _bufferlength

 '2. find tx_wr_ptr - the position in memory for inserting buffer contents
 _tx_wr_ptr = W812_readw(w812_s0_txwrptrh)
 _tx_mem_offset_low = _tx_wr_ptr And &H7FF
 _tx_mem_offset_high = _tx_mem_offset_low + _bufferlength
 _tx_mem_ptr = &H4000 + _tx_mem_offset_low

 '3. copy the buffer into tx_memory
 If _tx_mem_offset_high < &H801 Then 'no need to split buffer
 For _i = 1 To _bufferlength
 _str = Mid(buffer , _i , 1)
 _char = Asc(_str)
 Call W812_writeb(_tx_mem_ptr , _char)
 Incr _tx_mem_ptr
 Next _i
 Else 'we need to split buffer
 _lower_buffer = &H800 - _tx_mem_offset_low 'through to the end of mem
 For _i = 1 To _lower_buffer
 _str = Mid(buffer , _i , 1)
 _char = Asc(_str)
 Call W812_writeb(_tx_mem_ptr , _char)
 Incr _tx_mem_ptr
 Next _i
 _tx_mem_ptr = &H4000
 Incr _lower_buffer
 For _i = _lower_buffer To _bufferlength
 _str = Mid(buffer , _i , 1)
 _char = Asc(_str)
 Call W812_writeb(_tx_mem_ptr , _char)
 Incr _tx_mem_ptr
 Next _i
 End If

 '4. tell wiz the end of the data to send by moving tx_ptr forward
 _tx_wr_ptr = _tx_wr_ptr + _bufferlength
 Call W812_writew(w812_s0_txwrptrh , _tx_wr_ptr)
 '5. tell wiz to send data from tx_rd_ptr to tx_wr_ptr
 Call w812_writeb(w812_s0_commandreg , &H20) 'send
End Sub

799

'--
Sub w812_init
 Call w812_reset
 Call w812_writeb(w812_modereg , &H80)
 'Set Subnet mask
 Call w812_writeb(w812_subnet0 , 255)
 Call w812_writeb(w812_subnet1 , 255)
 Call w812_writeb(w812_subnet2 , 255)
 Call w812_writeb(w812_subnet3 , 0)
 'Set gateway IP address
 Call w812_writeb(w812_gw0 , 0)
 Call w812_writeb(w812_gw1 , 0)
 Call w812_writeb(w812_gw2 , 0)
 Call w812_writeb(w812_gw3 , 0)
 'Set MAC to any unique number
 Call w812_writeb(w812_mac0 , &H90)
 Call w812_writeb(w812_mac1 , &HA1)
 Call w812_writeb(w812_mac2 , &HB2)
 Call w812_writeb(w812_mac3 , &HC3)
 Call w812_writeb(w812_mac4 , &HD4)
 Call w812_writeb(w812_mac5 , &HE5)
 'Set static IP
 Call w812_writeb(w812_ip0 , 192)
 Call w812_writeb(w812_ip1 , 168)
 Call w812_writeb(w812_ip2 , 1)
 Call w812_writeb(w812_ip3 , 73)
 'Initialize socket 0 as TCP
 Call w812_writeb(w812_s0_modereg , &H1)
 'Port 5000=&H1388 80=&H0050 HTTP
 Call w812_writeb(w812_s0_porth , &H0)
 Call w812_writeb(w812_s0_portl , &H50)

 Call w812_cycleport()
End Sub

'--
Sub w812_reset
 'hardware reset for wiz
 w812_res = 1
 Waitms 10
 w812_res = 0
 Waitms 30 'Minimum 20 µs
 w812_res = 1
End Sub

'--
Sub w812_cycleport
 'close the socket, reopen it and wait
 Call W812_writeb(w812_s0_commandreg , &H0) 'close soc0
 Call W812_writeb(w812_s0_commandreg , &H1) 'open soc0
 Call W812_writeb(w812_s0_commandreg , &H2) 'listen on soc0
End Sub

800

'--
Sub w812_writeb(register , Dat)
 Local _bh As Byte
 Local _bl As Byte
 _bh = High(register) 'send address high byte
 _bl = Low(register) 'send address low byte
 Reset w812_cs
 Spiout w812_wr_code , 1
 Spiout _bh , 1
 Spiout _bl , 1
 Spiout Dat , 1
 Set w812_cs
End Sub
'--
Sub W812_writew(register_h , Dat)
 Local _d As Byte

 _d = High(dat)
 Call W812_writeb(register_h , _d) 'send high byte to high addr
 Incr Register_h
 _d = Low(dat)
 Call W812_writeb(register_h , _d) 'send low byte to low addr
End Sub
'--
Function W812_readb(register)
 'get 1 byte from a wiznet register
 Local _bh As Byte
 Local _bl As Byte
 _bh = High(register) 'send address high byte
 _bl = Low(register) 'send address low byte
 Reset W812_cs
 Spiout W812_rd_code , 1 'tell wiz we want to read
 Spiout _bh , 1
 Spiout _bl , 1
 Spiin _bl , 1 'get 1 byte
 Set w812_cs
 W812_readb = _bl 'return the byte
End Function
'--
Function W812_readw(register_h)
 'get 1 word from a register pair
 'read high address then low address
 Local _b As Byte
 Local _w As Word
 'get high byte
 _b = W812_readb(register_h) 'get data from high addr
 _w = _b 'put into low 8 buts of a word
 Shift _w , Left , 8 'move to hi 8 bits
 Incr Register_h 'set next address
 _b = W812_readb(register_h) 'get data from low addr
 _w = _w + _b 'put together
 W812_readw = _w 'return the word
End Function

'--

801

Served_webpage:
'BE CAREFUL EDITING AS SOME SPACES ARE CRUCIAL
'{013}{010} replaces CR LF
'{034} replaces "
Data "<html><head><meta http-equiv={034}PRAGMA{034} Content={034}NO-CACHE{034}/>"
'tell browser not to cache page
Data "<title>WIZNET812 WebServ_V1</title></head><body><center><H1> Welcome "
Data "SEND_CLIENT_IP" 'dynamically build ip addr in loop
Data " to the WIZNET812 webserver </H1></body></html>"
Data "END_OF_WEB_PAGE" 'tell program webpage is finished

802

54.12 Wiznet Server2 (version1)

The above programs explain the operation of the wiznet server, however they are highly complex
for students to work with so the program has been broken down into three major sections.

A. The main program
B. The wiznet setups
C. The routines to control the wiznet (that the user doesn’t have to know about)

Here is the main loop.

'--

'Title Block

' Author: B.Collis

' Date: Aug 09

' File Name: WebServ_V4

'--

'Program Description:

' Atmega16, char LCD and w812MJ Webserver

'--

'Compiler Directives (these tell Bascom things about our hardware)

$regfile = "m16def.dat"

$crystal = 8000000

$baud = 9600

$hwstack = 60

$swstack = 60

$framesize = 80

'--

'Hardware Setups

'the pins the wiz is connected to

W812_cs Alias Portb.2 'Chipselect w812

W812_ss Alias Portb.4 'not used

W812_int Alias Pinb.1 'INT of w812

W812_res Alias Portb.3 'Reset of w812

803

'all the other setups are in here

$include "WebServ2_setups.bas"

'the address etc for our wiz on the local network

W812_ip(1) = 192

W812_ip(2) = 168

W812_ip(3) = 1

W812_ip(4) = 73

W812_gw(1) = 192

W812_gw(2) = 168

W812_gw(3) = 1

W812_gw(4) = 1

W812_msk(1) = 255

W812_msk(2) = 255

W812_msk(3) = 255

W812_msk(4) = 0

W812_mac(1) = 10

W812_mac(2) = 11

W812_mac(3) = 12

W812_mac(4) = 13

W812_mac(5) = 14

W812_mac(6) = 15

'lcd

Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7

= Portc.5 , E = Portc.1 , Rs = Portc.0

Config Lcd = 20 * 4 'configure lcd screen

'ports to be controlled

Ctrl_0 Alias Porta.0

Ctrl_1 Alias Porta.2

'Config as outputs

Config Ctrl_0 = Output

Config Ctrl_1 = Output

'intiialise as on or off

Ctrl_0 = 0

Ctrl_1 = 1

804

'--

'wiznet program starts here

Ctrl_0 = 1 'flash an LED

Waitms 500

Ctrl_0 = 0

Cls

Lcd " Wiznet812 CONTROL "

'Init the spi pins

Spiinit

Gosub W812_init 'We initialize the wiz with its

settings

'we setup the watchdog timer for 2048mSecs

'if the program doesn't execute the reset watchdog command at least

'every 2 seconds, the microcontroller hardware will reset itself

'this is a really good safety mechanism

Config Watchdog = 2048 'Watchdog configuration for

Start Watchdog 'Start the watchdog

If Debug_word.3 = 1 Then Stop Watchdog 'in test mode

54.13 ‘Main do loop

'the main do-loop looks to see if something arrived,

'if it did then it looks to see if it contained a message

Do

 Reset Watchdog 'Reset the watchdog

 'Get socket status

 Gosub Get_w812_status

 'do something if a connection has happened

 If W812_status = W812_connected Then 'if we are connected

 Rx_flag = W812_receive_check() 'see if anything received

 If Rx_flag.1 = 1 And Rx_flag.0 = 1 Then 'body and"Content-

Length:" both present

 If Debug_word.6 = 1 Then Print "rx_flag=" ; Bin(rx_flag)

 Gosub Process_received_data 'here to process received mesgs

 End If

 'if we got at least a request then send the web page back

 If Rx_flag.1 = 1 Then 'full header found

 Call W812_writeb(w812_s0_commandreg , &H40)

 Call W812_send_webpage() 'send out the webpage

 Rx_flag = 0 'everything processed

 If Debug_word.6 = 1 Then Print "rx_flag=" ; Bin(rx_flag)

 End If

 End If

 'Connection was closed or is in the process of closing so we start

the socket new

 If W812_status = &H0 Or W812_status = &H1C Or W812_status = &H18 Then

 Call W812_cycleport()

 End If

Loop

End

805

54.14 process any messages received from browser
'--

'this sub will be entered when the user has interacted with the webpage

in some way

'e.g. pressed a button or pressed enter in a text box.

'it will not be entered when the user first looks at the page in their

browser.

'the codes in the buffer that it looks for are built into the webpage

below.

Process_received_data:

 'here we check to see if the user pressed the button ctrl_0_on

 If Instr(buffer , "CTRL_0=ON") > 0 Then

 Ctrl_0 = 1 'turn that port on

 Locate 1 , 1 'blank a line of the LCD

 Lcd Spc(20)

 Locate 1 , 1

 Lcd "CTRL_0=ON" 'say what was received

 End If

 If Instr(buffer , "CTRL_0=OFF") > 0 Then

 Ctrl_0 = 0

 Locate 1 , 1

 Lcd Spc(20)

 Locate 1 , 1

 Lcd "CTRL_0=OFF"

 End If

 If Instr(buffer , "CTRL_1=ON") > 0 Then

 Locate 1 , 1

 Lcd Spc(20)

 Locate 1 , 1

 Lcd "CTRL_1=ON"

 Ctrl_1 = 1

 End If

 If Instr(buffer , "CTRL_1=OFF") > 0 Then

 Locate 1 , 1

 Lcd Spc(20)

 Locate 1 , 1

 Lcd "CTRL_1=OFF"

 Ctrl_1 = 0

 End If

 'here we process the text the browsersent us

 If Instr(buffer , "TEXT2SEND=") > 0 Then

 Cls

 Lcd "text arrived"

 'separate the text into three lines for the lcd

 Length = Len(buffer)

 Buffer = Mid(buffer , 11 , Length) 'strip 'TEXT2SEND='

 Locate 2 , 1

 Length = Len(buffer)

 Select Case Length

 Case 1 To 20 :

 Lcd Buffer

806

 Locate 3 , 1

 Lcd Spc(20)

 Locate 4 , 1

 Lcd Spc(20)

 Case 21 To 40:

 Lcd Left(buffer , 20)

 Locate 3 , 1

 I = Length - 20

 Lcd Mid(buffer , 21 , I)

 Locate 4 , 1

 Lcd Spc(20)

 Case 41 To 60:

 Lcd Left(buffer , 20)

 Locate 3 , 1

 Lcd Mid(buffer , 21 , 20)

 Locate 4 , 1

 I = Length - 40

 Lcd Mid(buffer , 41 , I)

 Case Is > 60:

 Lcd Left(buffer , 20)

 Locate 3 , 1

 Lcd Mid(buffer , 21 , 20)

 Locate 4 , 1

 I = Length - 40

 Lcd Mid(buffer , 41 , 60)

 End Select

 End If

Return

'--

'--

'--

'this external file has all the routines we need to control the wiznet

$include "WebServ2_functions.bas"

807

54.15 Served webpage
'--

'here we build the webpage that the wiz will send to the browser

Served_webpage:
'BE CAREFUL EDITING AS SOME SPACES ARE CRUCIAL

'Variables must be on their own lines !!!

'everytime an input is wanted a form is created for it

' rather than 1 big form for for the whole webpage

' this means that only the data changed is sent not the whole lot

'{013}{010} measb send a CR LF

'{034} means send a "

Data "HTTP/1.0 200 Document follows{013}{010}"

Data "Server: w812MJ AVR server{013}{010}"

Data "Content-Type: text/html{013}{010}{013}{010}"

Data "<html>"

Data "<head>"

Data "<meta http-equiv={034}PRAGMA{034} Content={034}NO-CACHE{034}/>"

'tell browser not to cache page

Data "<title>WIZNET812 WebServ_V2</title>"

Data "</head>"

Data "<body>" 'body of the html document

Data "<center>" 'center the web page

Data "<h1> Welcome " 'in heading 1 format

Data ""

Data "SEND_CLIENT_IP" 'this tells the sendng routine to

send your ip back to you

Data "" 'in a different colour

Data " to my WIZnet812 web server</h1>" 'a title for the page

Data "<hr>" 'insert a blank line

Data "<table width={034}400{034} border = {034}9{034}>" 'create a

table with wide border

Data "<caption><h3>I/O Control</h3></caption>" 'with a caption

Data "<tr>" 'begin a row in the table

Data "<th>PORT</th>" 'text in first cell <th> means

heading

Data "<td> </td>" 'blank space so cell looks good

Data "<td> </td>" 'blank space so cell looks good

Data "</tr>" 'finish this row

Data "<tr>" 'begin a new row

Data "<th>A.0</th>" 'text in first cell <th> means

heading

Data "<td><center>" 'table data

Data "<form style={034}display:inline{034} action= {034}{034} method=

{034}POST{034} >" 'need a form to post data

Data "<input type= {034}submit{034} name= {034}CTRL_0{034} value=

{034}ON{034}>" 'button & data to send

Data "</form></td>" 'end of form, end of table data

Data "<td><center> " 'new cell

Data "<form style={034}display:inline{034} action= {034}{034} method=

{034}POST{034} >" 'need a form to post data

Data "<input type= {034}submit{034} name= {034}CTRL_0{034} value=

808

{034}OFF{034}>" 'button & data to send

Data "</form></td>" 'end of form, end of table data

Data "</tr>" 'finish row

Data "<tr>" 'begin a row

Data "<th>A.1</th>"

Data "<td><center>"

Data "<form style={034}display:inline{034} action= {034}/{034} method=

{034}POST{034} >" 'need a form to post data

Data "<input type= {034}submit{034} name= {034}CTRL_1{034} value=

{034}ON{034}>" 'button & data to send

Data "</form></td>" 'end of form

Data "<td><center>"

Data "<form style={034}display:inline{034} action= {034}{034} method=

{034}POST{034} >" 'need a form to post data

Data "<input type= {034}submit{034} name= {034}CTRL_1{034} value=

{034}OFF{034}>" 'button & data to send

Data "</form></td>" 'end of form , end of table data

Data "</tr>" 'finish row

Data "</table>" 'finish table

Data "
" 'line

'create another table

Data "<table width={034}250{034} border = {034}9{034}>" 'basic

table with wide border

Data "<caption><h3>To send me a message type it in here and press

enter</h3></caption>" 'with a caption

Data "<tr>" 'begin a row

Data "<td><center>"

Data "<form action={034}{034} method={034}POST{034}>" 'need a form

to post data

Data "<input type={034}text{034} name={034}TEXT2SEND{034} value=

{034}type here{034} size=70 maxlength=60>" 'text & data to send

Data "</form>" '

Data "</td>" 'end of form , end of table data

Data "</tr>" 'finish row

Data "<tr>" 'begin a row

Data "<td><center>max 60 characters can be sent</td>" 'button &

data to send

Data "</tr>" 'finish row

Data "<hr>" 'a line

Data "</body>"

Data "</html>"

Data "END_OF_WEB_PAGE" 'tell program webpage is finished

809

55 Assignment – maths in the real world
5 numbers are to be entered into memory via the 5 buttons and then displayed on the LCD. Press
btn A to move between the 5 numbers. Btn B to increment the number, btn C to decrement the
number. The maximum number will be 255, the minimum number will be 1. The display looks like
this.

The current code is listed below, load it into your microcontroller to see how it works. Then go onto
the next exercise.
'--
' 1. Title Block
' Author: B.Collis
' Date: 1 June 2005
' File Name: numberentryV0.1.bas

'--
' 2. Program Description:
' enters 5 numbers into variables A,B,C,D,E and display them
' 3. Hardware Features:
' LEDS
' LDR, Thermistor on ADC
' 5 switches
' LCD
' 4. Program Features
' do-loop to keep program going forever
' debounce to test switches
' if-then-endif to test variables

'--
' 5. Compiler Directives (these tell Bascom things about our hardware)
$crystal = 8000000
$regfile = "m8535.dat"

'--
' 6. Hardware Setups
' setup direction of all ports
Config Porta = Output 'LEDs on portA
Config Portb = Output 'LEDs on portB
Config Portc = Output 'LEDs on portC
Config Portd = Output 'LEDs on portD
'config inputs
Config Pina.0 = Input ' ldr
Config Pind.2 = Input 'switch A
Config Pind.3 = Input 'switch B
Config Pind.6 = Input 'switch C
Config Pinb.1 = Input 'switch D
Config Pinb.0 = Input 'switch E

'LCD

810

Config Lcdpin = Pin , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 , E = Portc.1 ,
Rs = Portc.0
Config Lcd = 40 * 2 'configure lcd screen

' 7. Hardware Aliases
Led3 Alias Portd.4
Sw_c Alias Pind.2
Sw_b Alias Pind.3
Sw_a Alias Pind.6

Spkr Alias Portd.7 'refer to spkr not PORTd.7
Cursor Off
' 8. initialise ports so hardware starts correctly
Porta = &B11111100 'turns off LEDs ignores ADC inputs
Portb = &B11111111 'turns off LEDs activate pullups switches
Portc = &B11111111 'turns off LEDs
Portd = &B11111111 'turns off LEDs activate pullups switches
Cls 'clear lcd screen

'--
' 9. Declare Constants
Const Btndelay = 15

'--
' 10. Declare Variables
Dim State As Byte
Dim A As Byte
Dim B As Byte
Dim C As Byte
Dim D As Byte
Dim E As Byte
Dim Sum As Byte
' 11. Initialise Variables
State = 0
'--

' 12. Program starts here
Cls
Do
 Debounce Sw_a , 0 , Swa_press , Sub
 Debounce Sw_b , 0 , Swb_press , Sub
 Debounce Sw_c , 0 , Swc_press , Sub
Loop
End

811

'--
' 13. Subroutines
Disp_numbrs:
 Locate 1 , 1
 Lcd A
 Locate 1 , 5
 Lcd B
 Locate 1 , 9
 Lcd C
 Locate 1 , 13
 Lcd D
 Locate 2 , 1
 Lcd E
Return

Swa_press:
 If State < 5 Then
 Incr State
 Else
 State = 1
 End If
 Gosub Disp_numbrs
Return

Swb_press:
 Select Case State
 Case 1 : Incr A
 Case 2 : Incr B
 Case 3 : Incr C
 Case 4 : Incr D
 Case 5 : Incr E
 End Select
 Gosub Disp_numbrs
Return

Swc_press:
 Select Case State
 Case 1 : Decr A
 Case 2 : Decr B
 Case 3 : Decr C
 Case 4 : Decr D
 Case 5 : Decr E
 End Select
 Gosub Disp_numbrs
Return

812

55.1 Math sssignment - part 1

The program as given to you has a few bugs for you to fix

1. After the power is applied the lcd is blank it should display the 5 numbers.
Write your code here that fixes this

2. The display does not blank any zeros when the numbers go from 100 to 99 and 10 to 9. Fix this
and explain here how you did it.

3. The numbers start at 0, they need to start at 1, fix this and explain here how you did it

4. Make the maximum number that can be entered 200, Write the code here that fixes this.

813

55.2 Math assignment - part 2

At the moment the user must press the button to increment or decrement the numbers
one at a time. There is no auto-repeat feature included in the debounce function. Add
some form of repeat feature so that the user can hold a button and after a short delay the
numbers will increase/decrease until the button is released.

You may want to try and do this using if pin=0 then..... rather than debounce.

Make your routine as generic or portable as possible, so that it could be easily
transferred to other programs.

Explain how your auto-repeat code works.

814

55.3 Math assignment - part 3

This program is going to be used by a groundsman to calculate the area of a
piece of land so that he can work out the amount of grass seed to buy. He will
use your program and pace out the 4 sides: a,b,c,d, and the diagonal e.

the formulae to work out the area of a triangle
is:
s= (a+b+e)/2
Area of first triangle = sqroot(s(s-a)(s-b)(s-e))

t= (c+d+e)/2
Area of second triangle = sqroot(t(t-c)(t-d)(t-e))

1. All the calculations must be in one subroutine.
2. You will also need to dimension some temporary variables to help you, e.g.
 dim sngl1 as single, sngl2 as single, sngl3 as single
3. Bascom can only do one arithmetic equation per line so you will need to
break up each equation into individual parts.

Here is half of the routine.
calcarea:

s= a+b
s=s+e
s=s/2
singl1=s-a
s=s*singl1 's(s-a)
singl2=s-b
s=s*singl2 's(s-a)(s-b)
singl3=s-e
s=s*singl3 ' s(s-a)(s-b)(s-e)
area=sqr(s) 'area of the first triangle

return

1. You complete the rest of the equation to work out the area of the second
triangle and then work out the total area for the whole shape.

2. Modify your program to automatically update the lcd with the calculated
area as the grounds man enters the data for each variable. Explain
where in your code you put the changes to make this update happen all
the time.

815

55.4 Math assignment - part 4

When the groundsman gets back to the office, he needs to draw a plan of the
area. To do this he needs the angles within the shape.

Using the cosine rule we can calculate these
for him.

U is the angle opposite side E
E2 = A2 + B2 - 2ABcos(U)

V is the angle opposite side E
A2 = E2 + B2 – 2EBcos(V)

 1. calculate each of the 6 angles

 2. U will be in radians, convert each angle to degrees.
 3. display them on the LCD

Write the code for calculating one of the angles below.

816

55.5 Math assignment - part 5

When the groundsman has calculated the area and angles, the data must be
stored into eeprom so that it will be there when he goes back to his office.
To do this you must declare some new variables e.g. eep_a, eep_b, ... and
dimension these dim eep_A as eram byte.
add a state and subroutine to your program which copies the variables A,B,C.etc
into the corresponding eeprom variables eep_a, eep_b, eep_c etc. Write it below
(you may want to change the fuselink in the AVR that causes the EEPROM to be
cleared every time the AVR is reprogrammed)

add a state and subroutine to your program that reads the eeprom variables and
copies them into the ram variables. Copy the subroutine here

817

55.6 Math assignment - part 6

Create a simple menu that allows the groundsman to select the operation to perform

 enter 5 lengths

 calculate and view the area

 calculate and view the angles

 store the values into eeprom

 read the values from eeprom

You must use a state variable to manage the program flow. Explain your code below.

55.7 Extension exercise

Give the groundsman the option to store multiple areas of land

818

56 SSD1928 based colour graphics LCD
The Display used is from techtoys.com.hk, it is not cheap but is the most suitable one I could
find for student projects.

So far in this course the LCDs covered have all had driver code built into Bascom or within
code libraries that hide the complexity of using the LCDs. This is not the case for the SSD, no
libraries exist for driving the SSD from Bascom or even from an AVR. Research to date of
these has found PIC microcontroller (not the Picaxe) libraries and faster more capable 32 bit
microcontrollers being used. In this case the drivers were written for Bascom. Also note that
at this time only a certain amount of SSD1928 is covered here but as students have further
opportunity (and the funds) to explore it, more information will be added.

56.1 System block diagram

There are three ICs – the ATMEga, THE SSD1928 on the display PCB and the HX8238
hidden on the back of the LCD itself.

LVC75Z779
www.techtoys.com.hk
Display PCB

User PCB

320x240
TFT LCD Panel

SSD1928
Driver

GPIO

ATMEGA

8Data + 6Control
HX8238
Driver

Touch panel

Data + Control

320 of 960
column lines used

240 row lines

819

56.2 TFT LCDs

It is useful to know a little about LCDs so that you can understand the software for driving
them.

An LCD requires quite specific driving signals; these are managed by ICs on the back of
LCD.

To get an LCD pixel to appear requires an AC voltage to be applied to each pixel individually.

Light passes through one polarizer, then through a crystal structure which has been twisted
and then it passes through the second polarizer which is at 90 degrees to the first one.

The applied voltage untwists the crystal and this blocks light from passing through the second
polarizer. The darkness of the pixel can be controlled by the amount of signal applied to it. In
a colour display each pixel is actually three separate sub pixels (R, G, B) which are controlled
individually.

Each pixel also has its own transistor embedded in it on the glass and hence the name of the
display type TFT, thin film transistor.

Having a transistor on each pixel helps switch the signals quickly reducing blurring and other
issues.
These animations from 3M about how LCDs work are of interest

http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?s
lideIndex=14

http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?slideIndex=14
http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?slideIndex=14

820

http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?s
lideIndex=34

56.3 System memory requirements

Each pixel is driven individually one after another in each line and 1 row after another. In a
320 row by 240 line display there are (320 x 240) 76,800 pixels to be driven. Each pixel is
however actually three sub pixels of red, green and blue. If we had 1 byte per colour then we
would need 320 x 240 x 3 = 230,400 bytes of information for 1 screen. In our system
however we only use 16 bit colour so 2 bytes per pixel (320 x 240 x 2 = 153,600 bytes). The
SSD1928 has a 256kByte RAM for storing the LCD panel data which therefore leaves us
spare ram.

56.4 System speed

Data must be sent from the SSD1928 to the HX8238 on the LCD many times per second
otherwise the LCD image will fade (LCD screens are refreshed at rates of 50 or more times
per second). The rate of this particular system setup is 52 screen refreshes per second.
You might think then that we need to send 320 x 240 x 2 x 52 = 7,987,200 bytes every
second , but it is actually more than this due to the timing requirements of the ICs – more
about this later.

To achieve all this high rate of timing inside the SSD1928 is a special oscillator circuit called a
PLL (phase locked loop) which generates the main internal clock signal of 72MHz from a
4MHz crystal on the PCB.

56.5 SSD and HX ICs

The SSD1928 has 128 pins in what is called a LQFP (low profile quad flat package) and can
either be driven with data which is 16bits in parallel or with 8 bit parallel data or even serially.
The HX8238 has 1,521 pins(!!); there are 320 columns each of which has a separate red,
green and blue line, so 960 connections are needed and another 240 pins are needed for the
240 rows. It comes as a COG (chip on glass) not as a usual package with pins but as a
‘bump’ package which has tiny pads underneath; it is also very small; just 22.18mm long x
0.96mm wide and only 0.015mm high!

56.6 Colour capability

Although the SSD1928 is capable of 16M colours (8bits each of red, green and blue,
255x255x255=16,581,375), we won’t actually get 16M because the HX is only capable of
262k colours (6bits of red, green and blue, 64x64x64=262,144 this is 18bit colour). Note that
all 24 bits of colour from the SSD are connected to the 24 colour input pins of the HX, but the
HX only uses the lower 6 bits of each colour.

18bit colour is of little use as we send data in byte size chunks, so in our software we are only
using 16 bits (2 bytes) to store colour information which gives us 65,536 colours. so our data
will take up 320x240x2 =152,600 bytes of the ram. The16 bits are arranged as:
RRRRRRGGGGGGBBBBB (5 bits of red, 6 bits of green and 5 bits of blue)

http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?slideIndex=34
http://solutions.3m.com/wps/portal/3M/en_US/Vikuiti1/BrandProducts/secondary/optics101/?slideIndex=34

821

56.7 SSD1928 and HX8238 control requirements

Referring to the previous block diagram the ATMega controls the SSD through 8 data and 6
control lines, over these lines travels both information to control the SSD and HX chips as
well as the colour information for the LCD panel.

In the extended block diagram below the SSD to HX connection is shown, it has 2 separate
sets of interface pins in the 54 pin flexi circuit; the first is for the colour control and data
signals, the second for control information for the HX chip. These are kept separate because
the HX chip requires precise timing for the colour data and timing control signals so these
cannot be halted to send control information to HX chip.

The colour data and control lines include 8 parallel data lines for colour information (even
though we send 16 bits of colour data), the two synchronization pulses (VSync and HSync),
the clock signal and a data enable pulse that is high only when actual colour information is
present.

The SSD1928 has 5 GPIO (general purpose IO) lines, 4 of which are connected to the 4
serial command lines of the HX8238 (CSB, SCK, SDI and SDO). These 4 serial lines are
used to send commands to the HX8238 to tell it about the LCD panel connected to it and
information about the timing of the Sync pulses.

The SSD1928 control signals to the HX8238 are fairly complex and normally you wouldn’t
have to know much about them however we have to write software that sets up the SSD to
generate the signals and more software to set up the HX8238 to be able to interpret the
signals being sent to it by the SSD1928. Interestingly although an LCD is technically different
to the old CRT screen the terms and signal timings used here are very similar.

SSD1928
Driver

HX8238
Driver

4MHz crystal

320x3=960 columns

240 rows

LCD panel

HSYNC

Data Enable

DOTCLK

VSYNC
HX Colour Control & Data

HX Serial Control Data
(SDA SCL EN Reset)

8 bits of colour data

822

56.8 SSD1928 Software

The software is broken up into a main program and a number of routines in other included
files. This reduces the over all size of the main program and helps to logically structure code
for others to understand. The only function of the main program then is to call the routinwes
that set up the LCD and then draw some text onto the LCD.

Before subroutines in other files can be used BASCOM requires that they must be declared.
An easy way to do this is to have two files setup one with the saubroutines in it (it ends with
.bas) and one with the declarations in it (these end with the extension .h), so in the directory
there are both .bas and .h files with the same name.

823

'***

'SSD1928 and HX8238 software - most work done by Ethan O.(School

student)

'Text routines by Abhilash K.(school student)

'Debugging, tidying up, and commenting by Bill Collis(teacher of

above 2!)

'***

$regfile = "m644def.dat"

$crystal = 20000000

$hwstack = 256

$swstack = 80

$framesize = 160

'***************************************

'declarations for routines are in the header files

$include "SSD1928_Register_Routines.h"

$include "SSD1928_GPIO_Routines.h"

$include "SSD1928_Hardware_Setup_Routines.h"

$include "SSD1928_Window_Control_Routines.h"

$include "SSD1928_Memory_Routines.h"

$include "SSD1928_Simple_Graphics_Routines.h"

$include "SSD1928_Text_Routines.h"

$include "SSD1928_Color_Defines.h"

Config Porta = Output

Config Portb = Output

Config Portc = Output

Config Portd = Output

'Hardware Aliases

'***************************************

'configure 8 bit dataport settings here

Datout Alias Portc

Datin Alias Pinc

Datdir Alias Ddrc

Ctrlout Alias Porta 'rd, wr, cs, rs, rst, bl,

slp, xx

'configure control lines here

Rd Alias Porta.7 'read active low

Wr Alias Porta.6 'write active low

Cs Alias Porta.5 'chip select - falling edge

latch

Rs Alias Porta.4 'data/#command

Rst Alias Porta.3 'active low 0=reset/halt

Bl Alias Porta.2 'active high 1=on

Slp Alias Porta.1 'pll 1=disable 0=enable

Dim Forecolor As Word

Dim Backcolor As Word

Dim _bit As Bit

Dim _byte As Byte

Dim _byte2 As Byte

Dim _word As Word

Dim _long As Long

824

Dim _page

As Byte '0=main window, 1=floating

window

Dim _line_mem_pitch As Long '320 for main wnd or width of

float wnd

'**

Const Screen_width = 320

Const Screen_height = 240

Const Page_mem_size = 153600

'screen width * screen height * 2bytes per pixel(16bit)

Const Line_mem_pitch = 320

_page = 0 'mem for main window

Dim Mx As Word

Dim My As Word

Dim Mdy As Integer

Dim Mdx As Integer

Dim _count As Word

Dim Strval As String * 10

Dim Byteval As Byte

Dim I As Byte , J As Word , K As Word

'**

'Program starts here

Call Resetdevice() 'setup PLL, MX8238, memory

areas

Call Ssd1928_mainwndenable(0) ' turn lcd off before

configuring

'Ssd1928_mainwndinit(Startaddr, Linewidth, Bitsperpixel, Orientation,

Rgb/yuv)

Call Ssd1928_mainwndinit(0 , 320 , 16 , 0 , 1)

Call Ssd1928_focuswnd(0) 'we are writing to main not

floating wind

Backcolor = &H0000 'use hex colour

Call Cleardevice() 'fill the screen with

backcolor

Call Ssd1928_mainwndenable(1) 'turn on the lcd

Wait 1

Backcolor = &B1110011000000100 'use 16 bit binary colour

Call Cleardevice() 'fill the screen with new

backcolor

Wait 1

Backcolor = Lightblue 'use predefined colours from

.h file

Call Cleardevice()

Forecolor = Blue

Textpos 0 , 0

Text8 "Some size 8 text, "

Forecolor = Brightcyan

Text8 "this is a great display!!!" 'text wrapping

825

Textpos 0 , 20

Forecolor = Magenta

Backcolor = Lightgreen

Text16 "size 16 font"

Textpos 0 , 40

Forecolor = White

Backcolor = Lightblue

Verdana "size 16 true type font verdana!"

Backcolor = Black

Forecolor = Red

For I = 0 To 50 Step 5

 J = I + 250

 K = 300 - I

 Drawline J , 180 , K , 220 , Forecolor

Next

Drawbox 10 , 200 , 60 , 233 , Blue

Drawbox 11 , 201 , 59 , 231 , Blue

Fillbox 15 , 205 , 55 , 228 , Red

Forecolor = Black

Backcolor = Red

Do

 For I = 0 To 50

 Strval = Str(i) 'text routines only display text so

convert

 Strval = Format(strval , " ") '2 spaces means 2 digits

displayed

 Textpos 20 , 210

 Call Text16(strval)

 Waitms 500

 Next

Loop

End 'end program

'***

$include "SSD1928_Text_Routines.bas" 'various text routines

$include "SSD1928_GPIO_Routines.bas" 'talk to MX8238

$include "SSD1928_Memory_Routines.bas" 'data memory

$include "SSD1928_Register_Routines.bas" 'control registers

$include "SSD1928_Window_Control_Routines.bas" 'window size and

enable

$include "SSD1928_Hardware_Setup_Routines.bas" 'SSD & LCD setup

$include "SSD1928_Simple_Graphics_Routines.bas" 'putpixel,

drawline, rgb

'***

$include Verdana.font 'modify font routines & remove to save

space

$include Font8x8.font 'modify font routines & remove to save

space

$include Font16x16.font 'modify font routines & remove to save

space

826

56.9 SSD1928 microcontroller hardware interface

The SSD1928 is a very complex device with many interfaces and features. To use these
features requires the developer to become familiar with many of the thousand plus registers
within the SSD, these control everything that the SSD does.

Before we can access the SSD registers however we need to configure the SSD to micro
interface and we have to setup some jumpers on the SSD interface board that tell the SSD
the configuration of the data we are going to be sending to it. These are the 4 switches
labeled CNF3, CNF2, CNF1 & CNF0 on the board and they should be set to 0011. This
setting indicates to the SSD to expect 8 bits at a time in indirect mode. Indirect mode means
sending 3 bytes of address and then the required bytes of data over a single 8 bit data bus.

You can also configure and use 16 bit indirect mode as well. Direct mode is also configurable
where the address and data are on separate buses. However this development board does
not give you access to the address bus so you cannot use direct modes.

827

56.10 Accessing SSD control registers

The first set of subroutines we will need will allow all of our other routines to write to and read
from the control registers in the SSD1928. Addressing a register requires 3 bytes of address
to be sent to the SSD. Note that this is more than the address range of the actual registers in
the SSD which could be addressed using 2 bytes; the addressing however is the same as
that used to access the 256kbyte SRAM in the SSD1928 for pixel colour data which requires
19 bits of address [A18:A0].

To tell the difference between an address of a register and an address in memory the SSD
requires the first bit of our three bytes of address to be a 1 for memory and a 0 for a register.
 e.g. &B1000 0000 0000 0000 1111 1111 is memory and &B0000 0000 0000 0000 1111
1111 is a register address.

We will need routines that can read and write 8, 16 and 32 bit data registers.
The routines we will write are:

 Read a byte from a register getreg(word_addr)

 Write a byte into a register setregb(word_addr, byte_data)

 Read a word (2 bytes) from a register getregw(word_addr)

 Write a word (2 bytes) into a register setregw(word_addr, word_data)

 Read a long (4 bytes) from a register getregl(word_addr)

 Write a long (4 bytes) into a register setregl(word_addr, long_data)

828

As an example the sequence for writing one word (two bytes) of data into two consecutive
registers is taken from the timing diagram in the SSD1928 datasheet. The three bytes of
address are sent first and then two bytes of data are sent. The first byte of data will go into
the register we set the address of; the second byte will go into the next register.

1. Read must be high – this is the default or usual state but we set it anyway

2. Write must be low as we are going to be writing into a register

3. RS(DC) – register select or DataCommand must be low (we are sending the address

of the register or command

4. Setup first of three address bytes – bit 7 of the first byte must be 0 to tell the SSD that

the address we want to access is a register and not a memory address (note that

steps 1 to 4 can happen in any order)

5. Take CS low – this is the important action that the SSD is waiting for to trigger it to do

something, the dotted line on the diagram tells us that the previous steps must all

happen before the negative edge of CS.

6. Return CS high

7. Setup the second byte of the address

8. Take CS low – triggering the SSD to know that another byte of address is on the data

bus

9. Return CS high

10. Setup third byte of the address

11. Take CS low then high again.

12. Take RS(DC) high, this means we have finished sending the address and will now

send the data

13. Setup the first byte of the data

14. Take CS low then high again.

15. As we have finished sending the data we return the write line to its default state which

is high

829

$nocompile

'**

56.11 SSD1928_Register_routines.bas

' allow reading and writing of the control registers in the SSD1928

'these routines have not been streamlined and are therefore

reasonably slow

'not a big issue though as we dont use them a lot.

'**

****'set 1 byte

Sub Setregb(byval Index As Word , Byval Value As Byte)

 Local L As Word

 L = Index

 Datdir = &HFF 'set as output

 Rs = 0 'first send address to SSD

 Wr = 0 '0 means we are writing

 Rd = 1 '1 means we are not reading

 Datout = 0 'bit7 = 0 so writing to

register

 Cs = 0

 Cs = 1

 Rotate L , Right , 8 'send upper byte

 Datout = L

 Cs = 0

 Cs = 1

 Rotate L , Left , 8 'send lower byte

 Datout = L

 Cs = 0

 Cs = 1

 Rs = 1 'next send data byte to SSD

 Datout = Value

 Cs = 0

 Cs = 1

 Wr = 1

End Sub

830

'**

'get a single byte from a register

Function Getregb(byval Index As Word) As Byte

 Local W As Word

 W = Index

 Datdir = &HFF

 Rs = 0 'first send address to SSD

 Wr = 0

 Rd = 1

 Datout = 0 'bit7 = 0 so writing to

register

 Cs = 0

 Cs = 1

 Rotate W , Right , 8

 Datout = W 'write AB15:8

 Cs = 0

 Cs = 1

 Rotate W , Left , 8

 Datout = W 'write AB7:0

 Cs = 0

 Cs = 1

 Datdir = 0 'set as input to recieve data

 Rd = 0 'setup for read command

 Rs = 1

 Wr = 1

 Cs = 0 'dummy read

 Cs = 1

 Cs = 0 'read real strobe

 Cs = 1

 Getregb = Datin 'get the data which the LCD sends us

 Datdir = &HFF 'reset port direction for write action

 Rd = 1

End Function

831

'***

'read 1 word from 2 consecutive registers

'Checked By Readin &H0000 which correctly returns 10000000 00101000

Function Getregw(byval Index As Word) As Word

 Local W As Word , B As Word

 W = Index

 Datdir = &HFF 'output

 Rs = 0 'first send address to SSD

 Wr = 0

 Rd = 1

 Datout = 0 'M/R = 0 => register

 Cs = 0 'write M/R

 Cs = 1

 Rotate W , Right , 8

 Datout = W

 Cs = 0 'write AB15:8

 Cs = 1

 Rotate W , Left , 8

 Datout = W

 Cs = 0 'write AB7:0

 Cs = 1

 Datdir = 0 'set as input to get data

 Rs = 1

 Wr = 1

 Rd = 0

 Cs = 0 'dummy read

 Cs = 1

 Cs = 0 'real read

 Cs = 1

 B = Datin 'get data

 'second read

 Cs = 0

 Cs = 1

 W = 0 'word going to be written to

L

 W = Datin

 Rotate W , Left , 8

 W = W Or B

 Getregw = W

 Datdir = &HFF 'return to output

 Rd = 1

 Rs = 0

End Function

832

'**

' write a word to 2 consecutive registers

'this is inefficient as setregb is called twice which sets up the

address

' each call, it cam be streamlined by removing the second call, this

wont

'increase progam speed though as it is hardly used.

Sub Setregw(byval Index As Word , Byval Value As Word)

 Local Byte2write As Byte

 Local W As Word

 Byte2write = Value And &HFF

 Call Setregb(index , Byte2write) 'write lower byte

 W = Value

 Rotate W , Right , 8 'get most significant byte

 Byte2write = W And &HFF

 Index = Index + 1 'next register

 Call Setregb(index , Byte2write) 'write upper byte

End Sub

'**

'write a long - 4 bytes into 4 consecutive registers

'very inefficient as it calls setregw twice which calls setregb 4

times!

Sub Setregl(byval Index As Word , Byval Value As Long)

 Local Word2write As Word

 Local L As Long

 L = Value

 Word2write = Value And &HFFFF

 Call Setregw(index , Word2write) 'write lower word for

register 'index'

 Rotate Value , Right , 16

 Word2write = Value And &HFFFF

 Index = Index + 2

 Call Setregw(index , Word2write) 'write upper word for

register 'index+2'

End Sub

'**

Function Getregl(byval Index As Word)

 Local W As Word

 Local L As Long

 W = Index + 2

 W = Getregw(w)

 L = W

 Shift L , Left , 16

 W = Getregw(index)

 L = L Or W

 Getregl = L

End Function

'***

833

56.12 Accessing the HX8238.

The only way to control the HX is to send data serially from the SSD. These routines give us
access to register &HAC in the SSD which controls the 5 GPIO lines, 4 of which are
connected to the HX.
'**

56.13 SSD1928_GPIO_routines.bas
'**

'these routines manage the communication between the SSD1928 on the

PCB

' and the HX8238 on the LCD panel itself

$nocompile

'**

'4 lines are used to communicate to the HX from the SSD

'we must use these routines to configure specific registers in the HX

'the state of these 4 lines is controlled by the GPIO status/ctl

register &HAC

'_gpiostatus keeps track of which bits are set or reset in the

register

'so it must be a global variable

' SSD_Gpio3 = HX_Lcd_reset = bit 3

' SSD_Gpio2 = HX_Lcd_spena = bit 2

' SSD_Gpio1 = HX_Lcd_spclk = bit 1

' SSD_Gpio0 = HX_Lcd_spdat = bit 0

Dim _gpiostatus As Byte

_gpiostatus = 0 'initially no bits are set

'**

Sub Gpio_spreset(byval State As Byte)

 If State = 1 Then

 _gpiostatus.3 = 1

 Else

 _gpiostatus.3 = 0

 End If

 Call Setregb(&Hac , _gpiostatus)

End Sub

'**

Sub Gpio_spena(byval State As Byte)

 If State = 1 Then

 _gpiostatus.2 = 1

 Else

 _gpiostatus.2 = 0

 End If

 Call Setregb(&Hac , _gpiostatus)

End Sub

'**

Sub Gpio_spclk(byval State As Byte)

 If State = 1 Then

 _gpiostatus.1 = 1

 Else

 _gpiostatus.1 = 0

 End If

 Call Setregb(&Hac , _gpiostatus)

End Sub

834

'**

Sub Gpio_spdat(byval State As Byte)

 If State = 1 Then

 _gpiostatus.0 = 1

 Else

 _gpiostatus.0 = 0

 End If

 Call Setregb(&Hac , _gpiostatus)

End Sub

'**

Sub Spi_write(byval B As Byte)

 Local Bit_cntr As Byte

 Local Temp As Byte

 'send the 8 bits of data out to spdat, toggling clk after each bit

 For Bit_cntr = 0 To 7

 Temp = B And &H80

 If Temp = 128 Then

 Call Gpio_spdat(1)

 Else

 Call Gpio_spdat(0)

 End If

 Call Gpio_spclk(0)

 Call Gpio_spclk(1)

 Shift B , Left , 1

 Next

End Sub

'**

Sub Spi_setreg(byval Reg As Byte , Byval Cmd As Word)

 Local B As Byte

 Local W As Word

 Call Gpio_spena(0)

 Call Spi_write(&H70)

 Call Spi_write(&H00)

 Call Spi_write(reg)

 Call Gpio_spena(1)

 Call Gpio_spena(0)

 Call Spi_write(&H72)

 W = Cmd

 Rotate W , Right , 8

 B = W

 Call Spi_write(b)

 Rotate W , Right , 8

 B = W

 Call Spi_write(b)

 Call Gpio_spena(1)

End Sub

'**

835

56.14 LCD timing signals

Now we know how to write to registers we need to figure out exactly what we should write
into those registers, this requires quite a lot of understanding about how an LCD is setup.

 Data is sent to the HX one pixel at a time in rows to make up one full screen of colour

information. The data cannot be sent asynchronously (without extra timing pulses) as the

HX must know when each new line and when each new screen starts so the synchronizing

signals HSync and VSync are sent as well.

 The data cannot be sent line by line continuously as the HX must have time between lines

and between frames to set up its internal electronic circuits.

 In the timing diagram below the bright green area shows the time for one line of 320 pixels

to be sent sequentially (one after the other) to the HX chip; note that one visible line is 320

pixels and they are all sent during the bright green, the rest of the green time is used as a

gap between each line. In a CRT (cathode ray tube)monitor or CRT TV a delay is required

after sending each line of information because the cathode ray (electron beam) had to be

repositioned to the beginning of the next line (flyback time) or to the top of the screen. In

an LCD everything is controlled by a single clock rate, so at the end of a line and before

the beginning of the next line a number of clock pulses are needed to allow time for the

internal electronics of the HX to reset the line counter inside the HX to the left edge of the

panel (the front and back horizontal porch times).

 The HX must know when a new line begins, and this is signaled by the HSync (horizontal

synchronization) pulse, which goes low for a short period of time. Its positive edge is the

reference for the horizontal or line timing

 The HX also must know when the colour data is present and this is signaled by the data or

LCD enable line being high.

 The SSD must send each row of data one after the other, and in the upper red areas of the

timing diagram the darkest area is the 240 visible lines of data. The total red areas of the

timing diagram show all the timing for one complete frame of the LCD. A frame is a full

screen of data sent line by line to the LCD panel. Note that there is also time at the end of

Horizontal Back
Porch time

LCD LINE OF DATA 320 pixels

Vertical Back
Porch time

LCD 240 ROWS of Data

VSync
LFrame

1 row of data

data enable
LCD_DEN

LShift

HSync
LLine

Vertical Front
Porch time

Vertical Front
Porch time

VSYNC pulse VSYNC pulse

Horizontal Front
Porch time

Horizontal Front
Porch time

HYSNC
pulse

HYSNC
pulse

R G R G BBGRB
pixel 320pixel 2pixel 1

dotclk

PCLK
5.625MHz

22.5MHz

836

a frame (whole screen of data) and before the next frame (the light red areas), again to

setup the internal electronics to reset the row counter to the top line of the LCD panel (

front and back horizontal porches).

 The DOTCLK comes from the SSD and is the clock signal for the HX to time all LCD

events, it is 22.5MHz, however note that during the visible line time (when LCD_DEN is

high) every 4th clock cycle is dropped.

56.15 HX setups

To use the device you don’t have to understand how the LCD and all the code works however
understanding the code and the datasheet is important so that students can explore other
features of the device.

 Register &H01, sets up some basic parameters for the connection of the LCD, e.g. changing

&H7300 to &H3300 changes bit RL and consequently mirrors the display. It also changes

the order of RGB so colours change as well; it would seem we can fix this by changing the

BGR bit which should reverse the colours but for some reason it doesn’t work. You can

rotate the display by changing both TB and RL bits (but again the colours are changed and

BGR doesn’t seem to affect the colours for some reason).

 Register &H0A of the HX alters the brightness and contrast settings. From the datasheet:

the brightness default is &H40 which is a brightness level of 0, the range of brightness is

from 7F (+126) to 00 (-128); the contrast default is &H08 which is a contrast level of 1, the

range is from &H0(0) to &H1F(3.875).

 Register &H0F changes the starting line of the LCD thus allowing you to roll the display

vertically.

 Of the HX setups the most important seem to be registers H16 and H17 in the HX.

H16 sets up the HX to know that there will be 320 pixels of horizontal data (see page 40 of

the HX datasheet-although it calls this register the horizontal porch it is not).

H17 sets up two vital aspects of the synchronization, the vertical and horizontal porch timings

(pages 40-42 of the HX datasheet). We set it to the valus &H2122 = &B 0010 0001 0010

0010

The first 2 bits are ignored.
The next 7 bits 1000010 are the horizontal back porch time; i.e. the time after HSync goes
high and before the next line starts. This is 66 in decimal and is measured in pixel clocks.
The next 7 bits 0100010 are the vertical back porch time; the time after VSync goes high and
before the next frame starts. This is 34 in decimal and is measured in lines.

837

56.16 SSD setups

There are a number of clocks to setup in the SSD to generate all the timing signals; from
page 8 of the SSD application note is the diagram below.

 The SSD generates the PLL clock of 72MHz from the 4MHz crystal using a phase

locked loop. The M and N values for the PLL are set up in registers &H126 and &H127

in the SSD and described on page 8 of the SSD1928A application note on pages 8

and 9. A PLL is a fancy digital divider network that outputs a higher frequency than the

one coming into it. The output is 4MHZ x M value / N value = 4 x 180/10 = 72MHz.

 The next stage in the clock sequence is MCLK, Register &H04 is 0 so MCLK = PLL =

72MHz

 PCLK is the pixel clock or frequency = MCLK x (registers &H15A, 159, 158 +1)/ 220=

72 x 81920 / 1048576 = 5.625MHz.

 The registers in the PCLK calculation are also used in the important LShift (dotclk)

calculation. LShift (dotclk) = MCLK x (PCLK ratio+1) / 218 = 72 x 81920 / 262144 =

22.5MHz.

 Note that dotclk and PCLK are not the same, dotclk is 4 times the freq of PCLK; this is

necessary because each pixel is actually 3 sub pixels (R-G-B), so for 1 count of PCLK

at least three cycles of the dotclk must occur. To achieve three cycles the SSD drops

one cycle in every four during the actual visible time as shown in the HSYNC and

VSYNC timing diagram earlier.

SSD Register &H10 is an important setup:
It sets the panel type (CSTN delta), colour, 8 bit data width and serial TFT.

838

56.17 SSD line / HSync timing

The actual timing for one line of data from the SSD to the HX as displayed on an oscilloscope
is shown below. The HSync pulse is very narrow, just 180nSec (0.18uSec) and a full line of
data takes about 72.5uS to send, of which 57uS is the time taken to send the 320 pixels (960
RGB sub pixels) of data, 12uS is the back porch (blank time after HSync pulse before data)
and 3.4uS is the front porch (blank time after data before HSync pulse).

All timing for lines is taken from a reference point and HPS –horizontal pulse start position
(registers &H22 and &H23 + 1) is the time in pixels from this point to the negative edge of the
horizontal sync pulse. The diagram on page 24 of the SSD app note shows the timings
relative to this point. In our case the registers are set to 0 so HPS=1 cycle of PCLK
(0.178uS) so all line timing is relative to 0.178uS before the negative edge of HSync. Note
that if HPS is set to more than 0 then it will impact on the other timings as well.

HT = Horizontal total and is set by registers &H12 and &H13, HT= 408 pixels (periods of
PCLK). This is the complete length of time to send 1 full line of colour information to the
display. PCLK period is 1/5.625MHZ=0.178uS so HT is set to 0.178 x 408 = 72.53uS, the
scope shows a period of 72.5uS.

HDPW = horizontal display pulse width = LLine pulse width. Register &H20 also sets up
HSync to be a negative pulse, the register is set to a value of 0 which sets up a negative
pulse of 1 PCLK duration = 0.178uS which was the measured time on the oscilloscope.

HDPS = horizontal display period start position and is the back porch timing + HPW + HPS.
Reg&H17 and reg&H16 are set to &H44 = 68 pixels = 68 x 0.178uS = 12uS.

HDP = horizontal display period and is set by register &H14, HDP = (&H27+1) x 8 = 320
pixels = 320 x 0.178uS = 57uS

Having set HT, HPS, HDPW, HDPS and HDP, the remaining time is the front porch time.

839

56.18 SSD row / VSync/ frame timing

Having generated the HSync pulses the next step is to setup the VSync or row timings. The
oscilloscope picture below shows the measured values. Note that a complete frame takes
18.99mS to send, so the LCD refresh rate is 1/0.01899 = 52 frames per second.
In the previous diagram we can see that it takes about 72.5uS to send 1 row of data, so for
240 rows it should take 240x72.5uS = 17,400uS, on the scope it was measured as 17379uS.
In the lower part of the diagram note the HSync pulse is continuously sent even during the
times when there is no pixel data.

All timing for frames is taken from a reference point and VPS –vertical pulse start position is
set in lines (registers &H31 and &H30) and pixels (registers &H31 and &H30) and is the time
from this point to the negative edge of the vertical sync pulse. These registers are all set to 0,
so all timing can be taken from the negative edge of VSync.

 VT = vertical total is the values of registers &H19 and &H18 plus 1 and is measured in lines.
These registers are setup with the values &H01, &H05. &H0105 = 261, so VT is 262lines.
From the previous measurements we know 1 line is HT (horizontal total) and is 72.53uS
therefore VT = 262 x 72.53 = 19mS.

VPW is vertical pulse width and is register &H24 value + 1 = 2 lines (145uS). Reg &H24 also
sets VSync to be a negative pulse.

VDPS = vertical display period start position (VSync pulse width + vertical back porch). This
is set by registers &H1F and &H1E. These are set to &H12 = 18 lines, 18 x 72.5uS = 1308uS,
this was measured as 1174uS+143uS = 1317uS.

VDP = vertical display period and is set by registers &H1D, &H1C. These have the value
&HEF, so VDP = &HEF+1 = 240 lines.
All these values are shown on Page 25 of the SSD app note.

840

This timing diagram has been taken from the SSD application note and modified to show the
clocks

The following code is responsible for all these setups.

841

56.19 HX and SSD setup routine
'***

56.20 'SSD1928_HardwareSetup_Routines.bas
$nocompile

Sub Resetdevice()

 'setup default levels for micro to SSD control lines

 Rd = 1 'read high

 Wr = 1 'write high

 Cs = 1 'chip select high

 Rs = 0 'send/receive command low

 Bl = 1 'back light on

 Slp = 0 'pll enabled

 Datdir = &HFF

 'pulse reset line to make sure SSD is in known state

 Rst = 0 'ssd halt

 Waitms 10

 Rst = 1 'ssd run

 Waitms 10

 Call Setregb(&Ha0 , &H0) 'reg power save off

 Waitms 200

 'setup SSD to HX serial lines

 Call Setregb(&Ha8 , &H0F) 'reg gpio config0

 Call Setregb(&Ha9 , &H80) 'reg gpio config1

 'set up HX,

 'see HX8238 datasheet for each word and indiv bit descriptions

 'set serial lines to known state

 Call Gpio_spena(1)

 Call Gpio_spclk(1)

 Call Gpio_spdat(1)

 Call Gpio_spreset(1)

 'reset HX

 Call Gpio_spreset(0)

 Waitms 1

 Call Gpio_spreset(1)

 'setup HX

 Call Spi_setreg(&H01 , &H7300) 'driver output control

 Call Spi_setreg(&H02 , &H0200) 'LCD driving waveform control

 Call Spi_setreg(&H03 , &H6364) 'power control 1

 'input data and color filter control

 'palm=1

 'blt1-0=00,

 'sel2-0=001 input interface mode=serial rgb, 19.5MHz operating

freq

 'swd2-0=111

 Call Spi_setreg(&H04 , &H040F) 'input data and colour filter

 Call Spi_setreg(&H05 , &HBCC4) 'function control

842

 'brightness default=&H40(0) range is from 7F(+126) to 00(-128)

 'contrast default=&H08 (1) range is from &H0(0) to &H1F(3.875)

 Call Spi_setreg(&H0a , &H4008) 'contrast/brightness

 Call Spi_setreg(&H0b , &HD400) 'frame cycle control

 Call Spi_setreg(&H0d , &H3229) 'power control 2

 Call Spi_setreg(&H0e , &H3200) 'power control 3 VOML

 'Vertical rolling of the display

 Call Spi_setreg(&H0f , &H0000) 'gate scan position

 '320 pixels

 '&H9F80 = 1001 1111 1000 0000 page 40 in HX datasheet

 Call Spi_setreg(&H16 , &H9F80)

 ' vertical porch

 '&H2122 = 0010 0001 0010 0010

 '00 are ignored

 '1000010 are the HBP bits (horizontal back porch) = 66 in decimal

 '0100010 are the VBP bits (vertical back porch) = 34 in decimal

 Call Spi_setreg(&H17 , &H2212) 'vertical/horizontal porch

 Call Spi_setreg(&H1e , &H0052) 'power control 4 VCOMH

 Call Spi_setreg(&H30 , &H0000) 'gamma control 1

 Call Spi_setreg(&H31 , &H0407) 'gamma control 1

 Call Spi_setreg(&H32 , &H0202) 'gamma control 1

 Call Spi_setreg(&H33 , &H0000) 'gamma control 1

 Call Spi_setreg(&H34 , &H0505) 'gamma control 1

 Call Spi_setreg(&H35 , &H0003) 'gamma control 1

 Call Spi_setreg(&H36 , &H0707) 'gamma control 1

 Call Spi_setreg(&H37 , &H0000) 'gamma control 1

 Call Spi_setreg(&H3a , &H0904) 'gamma control 2

 Call Spi_setreg(&H3b , &H0904) 'gamma control 2

 '***

 'setup SSD1928

 'LLine = LCD line

 'LFrame = LCD frame

 'LShift = LCD shift = dotclock

 'LCD_DEN = LCD enable

 'SSD PLL - phasew locked loop setup

 'internal clocks and the dotclock/LShift are generated from this

clock

 '72MHz

 Call Setregb(&H126 , &H0A) 'N Value

 Call Setregb(&H127 , &HB4) 'M Value

 Call Setregb(&H12b , &HAE) '72mhz

 Call Setregb(&H126 , &H8A) 'enable pll pll clock on

config 0

 'MCLK divider register

 'MCLK = PLL/(mclk div reg+1)

 'so MCLK = PLL clk

 Call Setregb(&H04 , &H0) 'mem reg mem clock

config

843

 Waitms 20

 'PCLK freq ratio register

 '&H013FFF

 'PCLK = MCLK * (ratio+1) / 2^20

 '=72MHZ *(&H14000)/ 1048576

 '=72000000 * 81920 / 1048576

 '= 5625000 = 5.625MHz

 Call Setregb(&H158 , &HFF) 'pclk freq ratio register0

 Call Setregb(&H159 , &H3F) 'pclk freq ratio register1

 Call Setregb(&H15a , &H01) 'pclk freq ratio register2

 'LShift/DotClk varies in frequency, see page 25 of the SSD app

Note

 'LShift=3/4 * MCLK *(PCLK ratio+1)/2^18 - during visible data

 'LShift=MCLK *(PCLK ratio+1)/2^18 - during non visible

time

 'LShift=22.5MHz

 'set up display timing

 '&H52 = 0101 0010

 '0 = color CSTN delta type panel

 '1 = color

 '01 = 8 bit data width

 '0 must be programmed as 0

 '010 = serial TFT

 Call Setregb(&H10 , &H52) 'panel type = delta cstn, color, serial

tft

 Call Setregb(&H11 , &H0) 'reg mod rate

 '---

 'LLine pulse start position register

 'HPS or horizontal pulse start position= time to neg edge of hysnc

= 0

 'lline start position

 Call Setregb(&H22 , 0) 'reg hsync pulse start pos

 Call Setregb(&H23 , 0) 'reg hsync pulse start pos

 Call Setregb(&H21 , &H0) 'reg lline pulse start TIMER0

subpixel pos

 'HT

 'horizontal total

 '&H32, &H07 = 0011 0010 0000 0111

 'HT= 00110010111 + 1 = dec 408

 Call Setregb(&H12 , &H32) 'reg horiz total0

 Call Setregb(&H13 , &H07) 'reg horiz total1

 'HDP

 'horizontal display period (H27+1)*8 = H140 = 320dec

 'must be less than step above

 Call Setregb(&H14 , &H27)

844

 'HDPS horizontal display period start position=&H0044=0100

0100=dec 68

 Call Setregb(&H16 , &H44) 'horizontal display start

position

 Call Setregb(&H17 , &H00) 'horizontal display start position

 'Lline or HPW = 0 = active low

 Call Setregb(&H20 , &H0) 'reg hsync pulse width

 '--

 'VPS = 'LFrame pulse start position

 Call Setregb(&H26 , &H00) 'lframe pulse start position

 Call Setregb(&H27 , &H00) 'lframe pulse start position

 'LFrame pulse start offset

 Call Setregb(&H31 , &H00)

 Call Setregb(&H30 , &H00)

 'VT

 'vertical total register = &H0105 = 261+1 = 262 lines

 'the sum of vertical display and vertical non display period

 'VDS + VDP must be less than VT

 Call Setregb(&H18 , &H05) 'vertical total

 Call Setregb(&H19 , &H01) 'vertical total

 'VPW

 'LFrame pulse width reg value + 1 = 2

 Call Setregb(&H24 , &H01) 'lframe pulse width

 Call Setregb(&H35 , &H00) 'lframe pulse stop offset

 'VDPS = &H12 = 18 lines

 Call Setregb(&H1e , &H12) 'Vertical display period start

pos

 Call Setregb(&H1f , &H00) 'Vertical display period start

pos

 'VDP = &HEF+1 = 240

 Call Setregb(&H1c , &HEF) 'vertical display period

 Call Setregb(&H1d , &H00) 'vertical display period

 Call Setregb(&Ha0 , &H00) 'display enable

End Sub

There are two window areas that can be used within the SSD memory, the first is the main
window the second is a floating window that can be drawn over the top of the main window in
this file are the routines for the windows and the routine to set which window is in focus. At
this stage the floating window routines have not been used.

'***

845

56.21 SSD1928_Window_Control_Routines.bas

$nocompile
'***
Sub Ssd1928_focuswnd(byval Wnd As Byte)

 Local Linewidth As Word

 If Wnd = 0 Then 'main window

 _page= 0

 _line_mem_pitch = Line_mem_pitch

 Else 'floating window

 page = 1
 _byte = Getreg(&H81)

 _word = _byte

 Shift _word , Left , 8

 Linewidth = _word

 _byte = Getreg(&H80) And &HFF

 _word = _byte

 Linewidth = Linewidth Or _word

 Shift , Linewidth , Left , 1

 _line_mem_pitch = Linewidth

 End If

End Sub

'***'Call

Ssd1928_mainwndinit(0 , 320 , 16 , 0 , 1)

'orientation rotates lcd but is not implemeted yet

'no point in setting rgb to anything but 1 yet

Sub Ssd1928_mainwndinit(byval Startaddr As Long , Byval Linewidth As

Word , Byval Bpp As Word , Byval Orient As Byte , Byval Rgb As Byte)

 'SSD memory is 256K so 17 bits are reqd to address it

 'main window start address register requires 3bytes to storeaddr

 'Reg &H74 main window display start address -least significant

byte

 'Reg &H75 main window display start address

 'Reg &H76 main window display start address - bit 17 is stored

here

 'although we pass it the address we pass it 0

 'so this doesnt actually do anything

 _long = Startaddr

 Shift _long , Right , 2 'pg 53 ssd1928 appnote reqs addr/4

 Call Setregl(&H74 , _long)

 'Reg &H78=main window line address offset reg-least signifcant

byte

 'Reg &H79 = main window line address offset register

 'tell the SSD how far in ram each line is stored from the last

 'each addr is a double word (32bits) divide 320 pix by 2 to get

offset

 _word = Linewidth

 Shift _word , Right , 1

 Call Setregw(&H78 , _word)

 'Reg &H70 = display mode register

846

 'even though we get bpp we fix it as 16 bits at this stage

 _byte = Getreg(&H70) Or &B100 'read reg, fix bit2 (assume

bits1,0=0)

 Call Setregb(&H70 , _byte) 'write back reg

 '&H71 special effects register pages 93-99 in ssd1928a appnote

 'get all bits force byte swap to 1, leave word swap which is 0

 _byte = Getreg(&H71) Or &B01000000

 'set bits 1 nd 0 as per orientation

 Select Case Orient

 Case 0: '00

 _byte = _byte And &B11111100 'bits 1,0 low (no

rotate)

 Case 1: '01

 Reset _byte.1 'force bit 1 to 0

 Set _byte.0 'force bit 0 to 1

 Case 2: '10

 Set _byte.1 'force bit 1 to 1

 Reset _byte.0 'force bit 0 to 0

 Case 3: '11

 _byte = _byte Or &B00000011 'force bit 1 and 0

to 1

 End Select

 Call Setregb(&H71 , _byte)

 '&H1A4 RGB/YUV setting register - main window = bit 6

 'YUV setting not used as yet

 _byte = Getreg(&H1a4) ' read register

 _byte.6 = Rgb.0 'force bit 6 to be the same

as rgb.0

 Call Setregb(&H1a4 , _byte) 'save register

End Sub

'***

'Reg &H70 = display mode register

Sub Ssd1928_mainwndenable(byval _enable As Byte)

 _bit = _enable '.0

 _byte = Getreg(&H70)

 _byte.7 = Not _bit '1 = on so invert

 Call Setregb(&H70 , _byte)

End Sub

847

'***Sub

Ssd1928_floatwndinit(byval Startaddr As Long , Byval Linewidth As

Word , Byval X As Word , Byval Y As Word , Byval Width As Word ,

Byval Height As Word , Byval Rgb As Byte)

 'Local _word As Word

 'Local _long As Long

 _word = X

 Shift _word , Right , 1

 Call Setregw(&H84 , _word)

 _word = X + Width

 Shift _word , Right , 1

 _word = _word - 1

 Call Setregw(&H8c , _word)

 Call Setregw(&H88 , Y)

 _word = Y + Height

 _word = _word - 1

 Call Setregw(&H90 , _word)

 _long = Startaddr

 Shift _long , Right , 2

 Call Setregl(&H7c , _long)

 _word = Linewidth

 Shift _word , Right , 1

 Call Setregw(&H80 , _word)

 _byte = Getreg(&H70)

 _byte2 = _byte Or 4

 Call Setregb(&H70 , _byte2)

 '&H1A4 RGB/YUV setting register - float window = bit 7

 _byte = Getreg(&H1a4) ' read reg, force bit 7 high

 _byte.7 = Rgb.0 'force bit 6 to be the same

as rgb.0

 Call Setregb(&H1a4 , _byte) 'save register

 End Sub

'***Sub

Ssd1928_floatwndenable(byval _enable As Byte)

 _byte = Getreg(&H71) 'read register

 _byte.4 = _enable.0 'bit4 0 = off 1 = visible

 Call Setregb(&H71 , _byte) 'write register

End Sub

'***

848

56.22 Colour data in the SSD memory

The 256kbyte SRAM stores the colour data for each pixel as 2 bytes.

These are setup as RRRRRRGGGGGGBBBBB (5 bits of red, 6 bits of green and 5 bits of
blue)

The following colors have been predefined.

'**

**

'SSD1928_Color_Defines.h

'**

**

$nocompile

'color definitions

Black Alias &B0000000000000000

Brightblue Alias &B0000000000011111

Brightgreen Alias &B0000011111100000

Brightcyan Alias &B0000011111111111

Brightred Alias &B1111100000000000

Brightmagenta Alias &B1111100000011111

Brightyellow Alias &B1111111111100000

Blue Alias &B0000000000010000

Green Alias &B0000010000000000

Cyan Alias &B0000010000010000

Red Alias &B1000000000000000

Magenta Alias &B1000000000010000

Brown Alias &B1111110000000000

Lightgray Alias &B1000010000010000

Darkgray Alias &B0100001000001000

Lightblue Alias &B1000010000011111

Lightgreen Alias &B1000011111110000

Lightcyan Alias &B1000011111111111

Lightred Alias &B1111110000010000

Lightmagenta Alias &B1111110000011111

Yellow Alias &B1111111111110000

White Alias &B1111111111111111

849

56.23 Accessing the SSD1928 colour memory

These routines are used to access the 256K byte colour data ram. When using these the
address is sent first using one routine and then the pixel data is sent using a second routine.

We only have an 8bit databus however between the AVR and the SSD1928, so usual
practice would be to get 8 bits at a time from a 16bit (word) or 32 bit(long) variable by rotating
the var 8 times for each byte. This is the process used in the previous routines to access the

control registers in the SSD,
however this is too slow even
using a 20MHZ AVR when we
want to draw lines and fill
boxes in the colour data
memory so to improve the
speed of these routines it is
quicker to use the BASCOM
overlay function where a byte
or word can be accessed
which is part of a larger
variable in memory.
If the var is a long then the 2

words sized vars that make it up can be accessed as also can the 4 byte size vars.
$nocompile

'**

56.24 'SSD1928_Memory_Routines.bas
'routines that allow access to the 256K ram in the SSD1928

Dim _mem_lng As Long 'e.g. at &H60

Dim _mem_wrd2 As Word At _mem_lng + 2 Overlay 'so at &H62

Dim _mem_wrd1 As Word At _mem_lng Overlay 'so at &H60

Dim _mem_b4 As Byte At _mem_lng + 3 Overlay 'so at &H63

Dim _mem_b3 As Byte At _mem_lng + 2 Overlay 'so at &H62

Dim _mem_b2 As Byte At _mem_lng + 1 Overlay 'so at &H61

Dim _mem_b1 As Byte At _mem_lng Overlay 'so at &h60

'**

'write an address in memory to the SSD before sending data

Sub Setaddress(byval Address As Long)

 'Datdir = &HFF

 Rd = 1

 Wr = 0

 Rs = 0

 _mem_lng = Address

 'send first byte, and make bit7 = 1 because we are accessing

memory

 Datout = _b3 Or &B10000000 'third byte

 Cs = 0

 Cs = 1

 Datout = _mem_b2 'second byte

 Cs = 0

 Cs = 1

 Datout = _mem_b1 'first byte

 Cs = 0

byte2
0000 0002

byte3
0000 0003

byte4
0000 0004

byte1
0000 0001

word1 (2 bytes)
0000 0001 0000 0002

word2 (2 bytes)
0000 0003 0000 0004

long (4 bytes)
0000 0001 0000 0002 0000 0003 0000 0004

Address Address +3Address +2Address +1

850

 Cs = 1

 Wr = 1

End Sub

'**

****'writes 16 bits of colour data to a previously setup address

Sub Writedata(byval Value As Word)

 'Datdir = &HFF

 Rd = 1

 Wr = 0

 Rs = 1 'Rs is high to write data

 _mem_wrd1 = Value

 Datout = _mem_b2 'high 8 bits

 Cs = 0

 Cs = 1

 Datout = _mem_b1 'low 8 bits

 Cs = 0

 Cs = 1

 Wr = 1

End Sub

'**

****'gets a byte of data from the ram in the ssd

Function Getdata(byval Void As Byte) As Byte

 Local Value As Byte

 Rs = 1

 Rd = 0

 Wr = 1

 Datdir = 0 'set portb to input

 Cs = 0

 Value = Datin 'read data

 Cs = 1

 Rd = 1

 Datdir = &HFF 'set portb back to input

 Getdata = Value

End Function

'**

851

56.25 Drawing simple graphics

Finally we have the SSD1928 and the
HX8238 set up correctly, we have the
ability to put colour data into the SSD1928
RAM now we need some routines to draw
some simple graphics like place a pixel,
draw lines and boxes.

The first routine allows us to set a pixel in
the LCD at the coordinates X,Y of the
LCD. Typically with an LCD 0,0 is the top
left coordinate (note that this is different
from a line or bar graph that we might draw
which has the bottom left corner as 0,0).
The bottom right corner is 319, 239.

We may already have previously defined a clip region, this is a smaller area of the screen that
we might set aside as ok for drawing graphics, and we first test to see if it is defined and then
if it is whether the pixel falls within it.

The next step is to locate where in the RAM the pixel data should actually be. Here are some
sample calculations, note that we need to store 2 bytes at once so we multiply X by 2 and
also need to offset Y by 640 bytes in RAM each time we come to a new line on the LCD.

LCD location (X,Y) RAM address calculation
Y x 640 + X x 2

RAM address

0, 0 (top left) 0 x 640 + 0 x 2 0

1, 0 0 x 640 + 1 x 2 2

2, 0 0 x 640 + 2 x 2 4

319, 0 (top right) 0 x 640 + 319 x 2 638

1,0 1 * 640 + 0 x 2 640

1,1 1 x 640 + 1 x 2 642

0, 239 (bottom left) 239 x 640 + 0 x 2 152,960

319 ,239 (bottom right) 239 x 640 + 239 * 2 153,598
'**

56.26 'SSD1928_Simple_Graphics_Routines.bas
$nocompile

Sub Putpixel(byval _x As Word , Byval _y As Word , Byval _color As

Word)

 Local _address As Long

 Local _draw As Byte

 Local _temp As Long

 'work out position of lcd pixel in SSD1928 ram

 _address = Page_mem_size * _page

 _temp = _line_mem_pitch

 Shift _temp , Left , 1

 _temp = _temp * _y

 Shift _x , Left , 1

 _temp = _temp + _x

 _address = _address + _temp

 Call Setaddress(_address)

 Call Writedata(_color)

End Sub

0,0

 319,239

20,20

clip region

 150,150

LCD

852

'**

Sub Drawline(byval X1 As Word , Byval Y1 As Word , Byval X2 As Word ,

Byval Y2 As Word , Byval _color As Word)

 Local _i As Integer

 Local Dx As Integer

 Local Dy As Integer

 Local Sdx As Integer

 Local Sdy As Integer

 Local Dxabs As Integer

 Local Dyabs As Integer

 Local X As Integer

 Local Y As Integer

 Local Px As Word

 Local Py As Word

 Local Itemp As Integer

 Dx = X2 - X1 'the horizontal distance of the line

 Dy = Y2 - Y1 'the vertical distance of the line

 Dxabs = Abs(dx)

 Dyabs = Abs(dy)

 Sdx = Dx / Abs(dx)

 Sdy = Dy / Abs(dy)

 X = Dyabs / 2

 Y = Dxabs / 2

 Px = X1

 Py = Y1

 Call Putpixel(px , Py , _color)

 If Dxabs >= Dyabs Then 'the line is more horizontal than

vertical

 Itemp = Dxabs - 1

 For _i = 0 To Itemp

 Y = Y + Dyabs

 If Y >= Dxabs Then

 Y = Y - Dxabs

 Py = Py + Sdy

 End If

 Px = Px + Sdx

 Call Putpixel(px , Py , _color)

 Next

 Else 'the line is more vertical than

horizontal

 Itemp = Dyabs - 1

 For _i = 0 To Itemp

 X = X + Dxabs

 If X >= Dyabs Then

 X = X - Dyabs

 Px = Px + Sdx

 End If

 Py = Py + Sdy

 Call Putpixel(px , Py , _color)

 Next

 End If

End Sub

853

'**

Sub Fillbox(byval _x1 As Word , Byval _y1 As Word , Byval _x2 As Word

, Byval _y2 As Word , Byval _color As Word)

 Local _x As Word

 Local _y As Word

 For _y = _y1 To _y2

 For _x = _x1 To _x2

 Putpixel _x , _y , _color

 Next

 Next

End Sub

'**

Sub Drawbox(byval _x1 As Word , Byval _y1 As Word , Byval _x2 As Word

, Byval _y2 As Word , Byval _color As Word)

 Drawline _x1 , _y1 , _x1 , _y2 , _color

 Drawline _x2 , _y1 , _x2 , _y2 , _color

 Drawline _x1 , _y1 , _x2 , _y1 , _color

 Drawline _x1 , _y2 , _x2 , _y2 , _color

End Sub

'**

Function Rgb(byval _r As Byte , Byval _g As Byte , Byval _b As Byte)

 Local Wtemp As Word

 Local Return_val As Word

 Return_val = 0

 Wtemp = _r

 Shift Wtemp , Left , 8

 Wtemp = Wtemp And &B1111100000000000

 Return_val = Return_val Or Wtemp

 Wtemp = _g

 Shift Wtemp , Left , 3

 Wtemp = Wtemp And &B0000011111100000

 Return_val = Return_val Or Wtemp

 Wtemp = _b

 Shift Wtemp , Right , 3

 Wtemp = Wtemp And &B0000000000011111

 Return_val = Return_val Or Wtemp

 Rgb = Return_val

End Function

'**

Sub Cleardevice()

 Local Counterr As Long

 Local L As Long

 L = Getregl(&H74)

 Rotate L , Left , 2

 Call Setaddress(0)

 For Counterr = 0 To 76799

 Call Writedata(backcolor)

 Next

End Sub

'***

854

56.27 SSD1928_text_routines
$nocompile

'**

****'Verdana font + initial routines by Abhilash (student)

'2 globals used so that new text flows on from the previous location

'note: a line is 8 rows high so 240 rows = 30 lines of text8

Dim _xpos As Word

Dim _ypos As Word

'locates cursor position

Sub Textpos(byval _x As Byte , Byval _y As Byte)

 _xpos = _x

 _ypos = _y

End Sub

'This routine prints lines of 8 point text on the LCD,

' it automatically wraps from one line to the next

' also remembers its position so that new text will flow on from the

old

Sub Text8(byval _text As String)

 Local _char As String * 1 , _letter As Word

 Local _textlen As Word , _charcount As Byte

 Local _columns As Word , _lookuppos As Word , _columndat As Byte ,

 _pixel As Byte

 _textlen = Len(_text)

 For _charcount = 1 To _textlen 'for each char in string

 _char = Mid(_text , _charcount , 1) 'get one character

 _letter = Asc(_char) 'find its pos in the ascii

table

 _letter = _letter - 32 'printable chars start at ascii

32

 For _columns = 0 To 7 '8 cols of data per char

 _lookuppos = _letter * 8 'find look up position in font

table

 _lookuppos = _lookuppos + 3 'ignore first 3 bytes in the

table

 _lookuppos = _lookuppos + _columns

 _columndat = Lookup(_lookuppos , Font8x8)

 For _pixel = 0 To 7

 If _columndat._pixel = 1 Then

 Call Putpixel(_xpos , _ypos , Forecolor)

 Else 'pixel not set so clear pixel to backcolor

 Call Putpixel(_xpos , _ypos , Backcolor)

 End If

 Incr _ypos 'next row

 Next

 _xpos = _xpos + 1

 _ypos = _ypos - 8 'done all 8 rows go back up

 If _xpos > 320 Then

 _ypos = _ypos + 8 'go down 1 line

 _xpos = 0 'start at beginning of line

 End If

 Next

 Next

End Sub

855

Sub Text16(byval _text As String)

 Local _yval As Word , _xval As Word , _line As Byte ,

 _char As String * 1 , _letter As Word

 Local _textlen As Word , _charcount As Byte

 Local _columns As Word , _lookuppos As Word ,

 _columndat As Byte , _pixel As Byte '

 _textlen = Len(_text)

 'here we look up the upper line of each char then display it ,

 'then go on to the next char,

 'when all upper lines are displayed we do the lower lines

 For _line = 1 To 2 'there are 2 lines (16 bits height)

 _yval = _ypos

 _xval = _xpos

 For _charcount = 1 To _textlen 'for each char in string

 _char = Mid(_text , _charcount , 1) 'get one character

 _letter = Asc(_char) 'find its pos in the ascii table

 _letter = _letter - 32 'printable chars start at ascii 32

 For _columns = 0 To 15 'characters are 16 pixels wide

 _lookuppos = _letter * 32'find look up pos in font table

 _lookuppos = _lookuppos + 3'ignore first 3 bytes in table

 _lookuppos = _lookuppos + _columns

 If _line = 2 Then _lookuppos = _lookuppos + 16

 'data for 2nd line

 _columndat = Lookup(_lookuppos , Font16x16)

 For _pixel = 0 To 7

 If _columndat._pixel = 1 Then 'display in forecolor

 Call Putpixel(_xval , _yval , Forecolor)

 Else ' clear pixel to backcolor

 Call Putpixel(_xval , _yval , Backcolor)

 End If

 Incr _yval ' next column

 Next

 _yval = _yval - 8 'back to top of column

 _xval = _xval + 1 'next column

 Next

 If _xval > 319 Then

 _xval = 0

 _yval = _yval + 16

 End If

 Next

 _ypos = _ypos + 8 'next line down

 Next

 _xpos = _xval 'reset value for next text

input

 _ypos = _yval - 8 'reset value for next text

input

End Sub

856

Sub Verdana(byval _text As String)

 Local _yval As Word , _xval As Word , _temp As Word

 Local _charwidth As Byte , _lookuppos_b As Byte , _lookuppos As

Word

 Local _line As Byte , _textlen As Word , _charcount As Byte ,

 _char As String * 1 , _letter As Word

 Local _columns As Word , _pixel As Word , _columndat As Byte

 _textlen = Len(_text)

 'this process is different to the 16x16 font

 'write top line of a charater then the bottom line of the

character

 'before going on to the next character

 For _charcount = 1 To _textlen 'for each char in string

 _char = Mid(_text , _charcount , 1) 'get one character

 _letter = Asc(_char) 'find its pos in the ascii

table

 _letter = _letter - 32 'printable chars start at ascii

32

 _letter = _letter * 3 'each letter in font table has 3 bytes

 'first byte is how many pixels wide the character is

 _charwidth = Lookup(_letter , Fontv)

 Incr _letter 'move to addr of letter data

 'get hundreds of letter data lookup address

 _lookuppos_b = Lookup(_letter , Fontv)

 _lookuppos = _lookuppos_b * 100

 Incr _letter 'move to second part of lookup addr

 _lookuppos_b = Lookup(_letter , Fontv)

 _lookuppos = _lookuppos + _lookuppos_b

 _lookuppos = _lookuppos + 1 'lookup addr in the font

table

 _temp = _xpos + _charwidth

 'check there is room for the whole character to be displayed

 If _temp > 319 Then

 _xpos = 0

 _ypos = _ypos + 16

 End If

 'display the character

 For _line = 1 To 2 'there are 2xlines(8rows) for each

character

 _yval = _ypos

 _xval = _xpos

 For _columns = 1 To _charwidth 'get data for each character

 _columndat = Lookup(_lookuppos , Fontv) 'looks up

byte

 For _pixel = 0 To 7 'looks at each bit in byte

 If _columndat._pixel = 1 Then 'turn on pixel

 Call Putpixel(_xval , _yval , Forecolor)

 Else 'pixel not set so clear pixel to

backcolor

 Call Putpixel(_xval , _yval , Backcolor)

 End If

 Incr _yval 'next pixel

 Next

 Incr _lookuppos 'increase column position for next

loop

 _yval = _yval - 8

857

 Incr _xval 'insert 1 column betwen characters

 For _pixel = 0 To 7 'fill space column with

backcolor

 Call Putpixel(_xval , _yval , Backcolor)

 Incr _yval

 Next

 _yval = _yval - 8

 Next

 _ypos = _ypos + 8 'now writing the lower row

 If _line = 1 Then _xval = _xpos 'resetting the x

position

 Next

 Incr _xval 'set x for next character

 _xpos = _xval

 _ypos = _ypos - 16 'back to top

 Next

End Sub

Because each character in a true type font is not a fixed width as in the 8x8 and 16x16 font
tables the lookup scheme for each character requires us to make 2 lookups. The first lookup
finds the number of bytes for each character that need to be retrieved from the table and their
starting position in the table, the second look up is the actual font data for displaying.

Here is some of the first line of the font table
.db 7 , 2 , 84 , 2 , 2 , 98 , 5 , 3 , 02 , 11 , 3 , 12 , 9 , 3 , 34 , 18 , 3 , 52 ……….
The first character is 7 pixels wide and at location 284 in the table
The second character is 2 pixels wide and at position 298 in the table
The third character is 5 pixels wide and at position 302 in the table, etc
Each ine after the first line is an actual line of font data

The third line in the font table is the exclamation mark it contains 16 vertical bits of data and
takes up only two pixels width of the LCD. All the upper line (8 bits) of data are stored in the
table first then the lower line
The exclamation mark is stored as .db 254 , 254 , 27 , 27 ; ! - 2pix

The first column of the first line is 254 = &B11111110
The second column repeats the first
The first column of the second line is 27 = &B00011011
The second column repeats the first

858

57 Traffic Light help and solution
Now here is some assistance for the traffic light exercise from early in the book

859

Wiring stage 4: the ‘C’ set of lights are wired up

For the last set of lights ports
A.6 and A.7 are used as well
as portB.4

860

Here is the final program for the traffic lights

'TrafficLightsVer1.bas

'B.Collis

'*************************

$crystal = 1000000

$regfile = "attiny26.dat"

Config Porta = Output

Config Portb = Output

'*************************

'LED connections

'use aliases so that the program is easier to write and understand

A_red Alias Porta.0

A_or Alias Porta.1

A_grn Alias Porta.2

B_red Alias Porta.3

B_or Alias Porta.4

B_grn Alias Porta.5

C_red Alias Porta.6

C_or Alias Porta.7

C_grn Alias Portb.4

'...

'...

'use constants to make the program easier to read and to change

Const Grn_delay = 8 'green on time

Const Or_delay = 3 'orange on time

Const Red_delay = 1 'safety delay between red &

next green

'initially set the red lights on and all others off

'introducing the new commands SET and RESET to individually control

port pins

Set A_red 'on

Reset A_or 'off

Reset A_grn 'off

Set B_red 'on

Reset B_or 'off

Reset B_grn 'off

Set C_red 'on

Reset C_or 'off

Reset C_grn 'off

861

Do

 'A lights

 Reset A_red 'off

 Set A_grn 'on

 Wait Grn_delay

 Reset A_grn 'off

 Set A_or 'on

 Wait Or_delay

 Reset A_or

 Set A_red

 Wait Red_delay 'small delay allows for red light runners!

 'B lights

 Reset B_red

 Set B_grn 'grn on

 Wait Grn_delay

 Reset B_grn 'grn off

 Set B_or

 Wait Or_delay

 Reset B_or

 Set B_red

 Wait Red_delay 'small delay allows for red light

runners!

 'C lights

 Reset C_red

 Set C_grn 'grn on

 Wait Grn_delay

 Reset C_grn 'grn off

 Set C_or

 Wait Or_delay

 Reset C_or

 Set C_red

 Wait Red_delay 'small delay allows for red light

runners!

Loop

End

862

58 Computer programming – low level detail

We refer to programming languages as either HIGH LEVEL languages or LOW LEVEL.

 High Level Languages include Basic, C, Java, Haskell, Lisp, Prolog, C++, C#
and many more.
High level languages are written using text editors such as Programmers
Notepad or within an IDE such as Eclipse or Visual Studio or… These
languages are typically easy for us to understand. However microcontrollers
do not understand these words they only understand binary numbers which are
called Machine Code. A computer program is ultimately a file with a .hex

extension containing machine code. Commands written in high level languages must be
compiled into these binary codes.

58.1 Low level languages:

Machine code for all microcontrollers and microprocessors (all computers) are groups of
binary digits (bits) arranged in bytes (8 bits) or words of 16, 32 or 64 bits.
Understanding a program in machine code is not at all easy. The AVR
machine code to add the numbers in 2 memory registers is 0001 1100 1010
0111.

To make machine code a little easier to understand we can abbreviate every 4
bits into hexadecimal numbers; HEX uses numbers 0 to 9 and the letters from

a to f.

It is easier on the eyes than machine code but still very difficult to read. It looks like this
1CA7 which is easier to read than is 0001 1100 1010 0111, but no easier to understand!
Program code for micros is never written today directly in machine code, abbreviations called
mnemonics are used and we call it assembler or assembly language or, assembly code
which is more readable, for example:
add r12 , r7 instead of 1C A7

Assembler is much easier to understand than machine code and is in very
common use for programming microcontrollers, however It does take more
effort to understand the microcontroller internals when programming in
assembler.

You can see the machine code in BASCOM by going to the directory where your programs
are stored and opening the .hex file (ignore the colon and the first 8 digits in each line, the
rest is the actual program). You can also see it when you go to manual programming mode
its all the hexadecimal in the program window.

863

58.2 AVR Internals – how the microcontroller works

The AVR microcontroller is a complex integrated circuit, with many features as shown in this block
diagram of the AVR’s internal architecture.

There are memory, calculation, control and I/O components.

864

58.3 1. The 8bit data bus

This is actually 8 parallel wires that interconnect the
different parts within the IC. At any one time only
one section of the 8535 is able to transmit on the
bus.

Each device has its own address on the bus and is
told when it can receive and when it can transmit
data.

Note that with 8 bits (1 byte) only numbers up to
255 may be transmitted at once, larger numbers
need to be transferred in several sequential moves.

58.4 2. Memory

There are three separate memory areas within the AVR, these are the Flash, the Data Memory
and the EEPROM.

In the 8535 the Flash or program memory is 4k of words (8k bytes) of program. The AVR stores
program instructions as 16 bit words. Flash Memory is like a row of lockers or pigeon holes. When

865

the micro starts it goes to the first one to fetch an instruction, it carries out that instruction then
gets the next one.

The Static RAM is a volatile store for variables within the program.

The EEPROM is a non-volatile store for variables within the program.

The 32 general purpose registers are used by your programs as temporary storage for data while
the microcontroller is working on it (in some micros these are called accumulators).

If you had a line on your code to add 2 numbers e.g. z=x+y. The micro will get the contents of ram
location X and store it in a register, it will get the contents of ram location Y and puts it into a
second register, it will then add the 2 numbers and the result will go into one of the registers, it
then writes the answer from that register into memory location Z.

The 64 I/O registers are memeory locations with special hardware abilities, when you change
something in a register the hardware attached to it changes; it is here that you access the ports,
ADC etc and their control them.

58.5 3. Special Function registers

There are several special high speed memory registers within the microcontroller.

 * Program counter: 16 bits wide, this keeps track of which instruction in flash the microcontroller
is carrying out. After completing an instruction it will be incremented to point at the next location.
 * Instruction register: As a program instruction is called from program memory it is held here
and decoded.
 * Status Register: holds information relating to the outcome of processing within the
microcontroller, e.g. did the addition overflow?

4. ALU
The arithmetic logic unit carries out mathematical operations on the binary data in the registers
and memory, it can add, subtract, multiply, compare, shift, test, AND, OR, NOR the data.

58.6 A simple program to demonstrate the AVR in operation

Lets take a simple program in Bascom then analyse the equivalent machine code program and
then what happens within the microcontroller itself.
This program below configures all of portc pins as outputs, then counts binary in a never ending
loop on the LEDs on portc.

Config Portc = Output 'all of portc pins as outputs
Dim Temp As Byte 'set memory aside
Temp = 0 'set its initial value to 0
Do
 Incr Temp 'increment memory
 Portc = Temp 'write the memory to port c
Loop 'loop forever
End

This is compiled into machine code, which is a long line of binary numbers. However we don't
normally view the numbers as binary, it is shorter to use hexadecimal notation.

Equivalent machine code to the Bascom code above is:
EF0F (1110 1111 0000 1111)

866

BB04
E000
BB05
9503
CFFD

These program commands are programmed into the microcontroller starting from the first address
of the FLASH (program memory). When the micro is powered up (or reset) it starts executing
instructions from that first memory location.

The equivalent assembly language to the above machine code

EF 0F SER R16 set all bits in register 16
BB 04 OUT 0x14,R16 store register 16 at address 14 (portc = output)
E0 00 LDI R16,0x00 load immediate register 16 with 0 (temp=0)
BB 05 OUT 0x15,R16 store register 16 at address 15 (port C = temp)
95 03 INC R16 increment register 16 (incr temp)
CF FD RJMP -0x0003 jump back 3 steps in the program (back to BB05)

1. The microcontroller powers up and the program counter is loaded with address &H000, the first

location in the flash (program memory). The first instruction is EF 0F and it is transferred into
the instruction register. The program counter is then incremented by one to 0x01. The
instruction is decoded and register 16 is set to all ones.

2. The next cycle of the clock occurs and BB 04 is moved from the flash into the instruction
register. The program counter is incremented by one to 0x02. The instruction is decoded and
R16 contents are copied to address 0x14 (0x means hex), this is the i/o register that controls
the direction of port c, so now all pins of portc are outputs.

3. The next cycle of the clock occurs and E0 00 is moved into the instruction register from the
flash. The program counter is incremented by one (to 0x03). The instruction is decoded and
Register 16 is loaded with all 0's.

4. The next cycle of the clock occurs and BB 05 is moved into the instruction register from the
flash. The program counter is incremented by one (to 0x04). The instruction is decoded and
the contents of register 16 (0) are copied to address 0x15 this is the i/o register address for
portc itself – so all portc goes low.

5. The next cycle of the clock occurs and 95 03 is moved into the instruction register from the
flash. The program counter is incremented by one (to 0x05). The instruction is decoded and
the contents of register 16 are incremented by 1 (to 01). This operation requires the use of the
ALU as a mathematical calculation is involved.

6. The next cycle of the clock occurs and CF FD is moved into the instruction register from the
flash. The program counter is incremented by one (to 0x06). CF FD is decoded and the
program counter has 3 subtracted from it (It is 0x06 at the moment so it becomes 0x03). The
sequence jumps back to number three causing a never ending loop.

867

58.7 Bascom keyword reference

1WIRE
1Wire routines allow you to communicate with Dallas 1wire chips.
1WRESET , 1WREAD , 1WWRITE , 1WSEARCHFIRST , 1WSEARCHNEXT ,1WVERIFY ,
1WIRECOUNT
Conditions
Conditions execute a part of the program depending on the condition
IF-THEN-ELSE-END IF , WHILE-WEND , ELSE , DO-LOOP , SELECT CASE - END SELECT ,
FOR-NEXT
Configuration
Configuration command initialize the hardware to the desired state.
CONFIG , CONFIG ACI , CONFIG ADC , CONFIG BCCARD , CONFIG CLOCK , CONFIG COM1
, CONFIG COM2 , CONFIG DATE , CONFIG PS2EMU , CONFIG ATEMU , CONFIG I2CSLAVE ,
CONFIG GRAPHLCD , CONFIG KEYBOARD , CONFIG TIMER0 , CONFIG TIMER1 , CONFIG
LCDBUS , CONFIG LCDMODE , CONFIG 1WIRE , CONFIG LCD , CONFIG SERIALOUT ,
CONFIG SERIALOUT1 , CONFIG SERIALIN , CONFIG SERIALIN1 , CONFIG SPI , CONFIG
LCDPIN , CONFIG SDA , CONFIG SCL , CONFIG DEBOUNCE , CONFIG WATCHDOG ,
CONFIG PORT , COUNTER0 AND COUNTER1 , CONFIG TCPIP
Conversion
A conversion routine is a function that converts a number or string.
BCD , GRAY2BIN , BIN2GRAY , BIN , MAKEBCD , MAKEDEC , MAKEINT , FORMAT , FUSING
, BINVAL , CRC8 , CRC16 , CRC32 , HIGH , HIGHW , LOW
DateTime
Date Time routines can be used to calculate with date and/or times.
DATE , TIME , DATE$, TIME$, DAYOFWEEK , DAYOFYEAR , SECOFDAY , SECELAPSED ,
SYSDAY , SYSSEC , SYSSECELAPSED
Delay
Delay routines delay the program for the specified time.
WAIT , WAITMS , WAITUS , DELAY
Directives
Directives are special instructions for the compiler. They can override a setting from the IDE.
$ASM , $BAUD , $BAUD1 , $BGF , $BOOT , $CRYSTAL , $DATA , $DBG , $DEFAULT ,
$EEPLEAVE , $EEPROM , $EEPROMHEX , $EXTERNAL , $HWSTACK , $INC , $INCLUDE ,
$INITMICRO , $LCD , $LCDRS , $LCDPUTCTRL , $LCDPUTDATA , $LCDVFO , $LIB ,
$LOADER , $LOADERSIZE , $MAP , $NOINIT , $NORAMCLEAR , $PROG , $PROGRAMMER ,
$REGFILE , $ROMSTART $SERIALINPUT, $SERIALINPUT1 , $SERIALINPUT2LCD ,
$SERIALOUTPUT , $SERIALOUTPUT1 , $SIM , $SWSTACK , $TIMEOUT , $TINY ,
$WAITSTATE , $XRAMSIZE , $XRAMSTART , $XA
File
File commands can be used with AVR-DOS, the Disk Operating System for AVR.
BSAVE , BLOAD , GET , VER , , DISKFREE , DIR , DriveReset , DriveInit , , LINE INPUT ,
INITFILESYSTEM , EOF , WRITE , FLUSH , FREEFILE , FILEATTR , FILEDATE , FILETIME ,
FILEDATETIME , FILELEN , SEEK , KILL , DriveGetIdentity , DriveWriteSector , DriveReadSector
, LOC , LOF , PUT , OPEN , CLOSE
Graphical LCD
Graphical LCD commands extend the normal text LCD commands.
GLCDCMD , GLCDDATA , SETFONT , LINE , PSET , SHOWPIC , SHOWPICE , CIRCLE
I2C
I2C commands allow you to communicate with I2C chips with the TWI hardware or with emulated
I2C hardware.
I2CINIT , I2CRECEIVE , I2CSEND , I2CSTART,I2CSTOP,I2CRBYTE,I2CWBYTE

868

IO
I/O commands are related to the I/O pins of the processor.
ALIAS , BITWAIT , TOGGLE , RESET , SET , SHIFTIN , SHIFTOUT , DEBOUNCE , PULSEIN ,
PULSEOUT
Micro
Micro statements are highly related to the micro processor.
IDLE , POWERDOWN , POWERSAVE , ON INTERRUPT , ENABLE , DISABLE , START , END
, VERSION , CLOCKDIVISION , CRYSTAL , STOP
Memory
Memory functions set or read RAM , EEPROM or flash memory.
WRITEEEPROM , CPEEK , CPEEKH , PEEK , POKE , OUT , READEEPROM , DATA , INP ,
READ , RESTORE , LOOKDOWN , LOOKUP , LOOKUPSTR , CPEEKH , LOAD , LOADADR ,
LOADLABEL , LOADWORDADR , MEMCOPY
Remote Control
Remote control statements send or receive IR commands for remote control.
RC5SEND , RC6SEND , GETRC5 , SONYSEND
RS-232
RS-232 are serial routines that use the UART or emulate a UART.
BAUD , BAUD1, BUFSPACE , ECHO , WAITKEY , ISCHARWAITING , INKEY , INPUTBIN ,
INPUTHEX , INPUT , PRINT , PRINTBIN , SERIN , SEROUT , SPC
SPI
SPI routines communicate according to the SPI protocol with either hardware SPI or software
emulated SPI.
SPIIN , SPIINIT , SPIMOVE , SPIOUT
String
String routines are used to manipulate strings.
ASC , UCASE , LCASE , TRIM , SPLIT , LTRIM , INSTR , SPACE , STRING , RTRIM , LEFT ,
LEN , MID , RIGHT , VAL , STR , CHR , CHECKSUM , HEX , HEXVAL
TCP/IP
TCP/IP routines can be used with the W3100/IIM7000/IIM7010 modules.
BASE64DEC , BASE64ENC , IP2STR , UDPREAD , UDPWRITE , UDPWRITESTR , TCPWRITE
, TCPWRITESTR , TCPREAD , GETDSTIP , GETDSTPORT , SOCKETSTAT ,
SOCKETCONNECT , SOCKETLISTEN , GETSOCKET , CLOSESOCKET , SETTCP ,
GETTCPREGS , SETTCPREGS
Text LCD
Text LCD routines work with the normal text based LCD displays.
HOME , CURSOR , UPPERLINE , THIRDLINE , INITLCD , LOWERLINE , LCD , LCDAT ,
FOURTHLINE , DISPLAY , LCDCONTRAST , LOCATE , SHIFTCURSOR , DEFLCDCHAR ,
SHIFTLCD , CLS
Trig & Math
Trig and Math routines worj with numeric variables.
ACOS , ASIN , ATN , ATN2 , EXP , RAD2DEG , FRAC , TAN , TANH , COS , COSH , LOG ,
LOG10 , ROUND , ABS , INT , MAX , MIN , SQR , SGN , POWER , SIN , SINH , FIX , INCR ,
DECR , DEG2RAD
Various
This section contains all statements that were hard to put into another group
CONST , DBG , DECLARE FUNCTION , DECLARE SUB , DEFXXX , DIM , DTMFOUT , EXIT ,
ENCODER , GETADC , GETKBD , GETATKBD , GETRC , GOSUB , GOTO , LOCAL ,ON VALUE
, POPALL , PS2MOUSEXY , PUSHALL , RETURN , RND , ROTATE , SENDSCAN ,
SENDSCANKBD , SHIFT , SOUND , STCHECK , SUB , SWAP , VARPTR , X10DETECT ,
X10SEND , READMAGCARD , REM , BITS , BYVAL , CALL , #IF , #ELSE , #EN

869

59 USB programmer - USBASP
More recently we have been building the USBASP programmer from http://www.fischl.de/usbasp/
Using this PCB design

And layouts

http://www.fischl.de/usbasp/

870

I am currently using version 2.0.4.0 of Bascom allows you to select USBASP as a programmer,
this has only worked in the later versions, so make sure you are using the latest version of
Bascom.

Installing drivers on Windows 7 use to be a real pain, however the latest version libusb is great.

Its actually not worth making one of these as there are some real cheap and good USBASP
programmers on EBAY!!.

871

60 USBTinyISP programmer

A full kitset for the hardware can be purchased from http://www.adafruit.com/ or it can be built from
scratch from circuits at http://www.ladyada.net/make/usbtinyisp/, or within the workshop we have
eagle files for the programmer and we can program the chip.

It is easy to use and setup;
1. Install the latest version of winavr and the programming software avrdude will be installed with
it.
2. You will need a USB driver get it from http://www.ladyada.net/make/usbtinyisp/download.html.
When you plug in the programmer it will ask for drivers, install them from wherever you
downloaded them to.
3. Setup Bascom to start the program automatically.
From Bascom-AVR menu select Options – Compiler – Output tab and make sure hex file is
selected
From Bascom-AVR menu select Options – Programmer and setit up as per the following

When you have compiled your program press F4 and it should work fine.

Notes: the –u option has been specified, this tells AVRDUDE not to read the fusebits and not to
set them. The default option (not using –u) reads the fusebits and rewrites them again. This
means that if there is a glitch in the programming the fuse bits could be overwritten with something
that doesn’t work well and your micro becomes unuseable!! This has been experienced first hand
so always use the –u option!!

http://www.ladyada.net/make/usbtinyisp/download.html

872

An issue with this process is that you get no feedback from BASCOM that the programming has
worked (or not) as the command window appears and then rapidly disappears.

An alternative to the above setup is to create a small batch (text file).
Here is one called pgm_m48.bat for programming the ATMEGA48.

Open Windows Notepad and copy these two lines into it and save it in the c:\winavr\bin directory.
avrdude -c usbtiny -p m48 -u -U flash:w:%1:i
pause

(%1 is used to refer to the first parameter that is passed to the batch file in this case the name of
the hex file created by Bascom)

Next open Bascom-AVR – options – programmer and set it up as per the following

After you press F4 to program the micro the command window appears and will stay open after
programming so that you can see the program output. It is closed by pressing any key. If you are
using different AVRs just great different batch files. You will need to change the batchfile selected
in the programming options when you change AVR type (that’s only a small inconvenience
though).

You will need to create different batch files for each different chip.
OR>>>

873

There is a third option, it is to use a program I have written bascom2avrdude2.exe that handles
programming nicely for you.

Download the executable file (you must have dotnet3.5 installed to use it)
There is no install, just save it somewhere like the root of C:\.

874

Open Bascom and add it to the path like this

Whenever you press F4 to program the microcontroller, the bascom2avrdude2 window will open
and try to program your chip using avrdude. If it gives you a green textbox, it programmed
successfuly, if it gives you another colour then there was an error and a messagebox will give an
idea as to what went wrong.

Happy programming…

875

61 C-Programming and the AVR
It is no problem at all to jump into C programming for the AVR.
First download AtmelStudio; you can use WinAVR as well but here it will be AtmelStudio we will
focus on.
Download and install it from www.atmel.com, this tutorial will use Version 6.

There are many useful tutorials on the internet about this so briefly.

http://www.atmel.com/

876

61.1 Configuring a programmer

Atmel Studio does not include the USBasp programmer but it can be added as a button on the
toolbar. Atmel Studio will call AVRDude to do the actual programming.
If you have installed WinAVR as well you wont need to down load AVRDude programing software.
On the Tools menu select External Tools and add a new tool, the first micro is the Mega644 so it
will be labelled AVRDudeM644

The arguments line is:
-c usbasp -p m644 -u -U flash:w:"$(ProjectDir)Debug\$(ItemFileName).hex":i
Remember to select Use Output window so that the results from AVRDude can be seen.
The board can now be programmed from the tools menu.

Because Atmel Studio cannot pass the part number to AVRDude it must be in the arguments line.
So a new tool will be created for each device used.

877

Right click on the toolbar and select the specific toolbar where the button should appear. In this
case the device and debugger toolbar is chosen.

Choose Add Command

The AVRDudeM644 tool will not appear as a named item but will be External Command1 under
the Tools category. After selecting OK it can be renamed; then a button for it will appear in the
toolbar

878

61.2 First program

Choose File then New Project

Choose C/C+ and AVRGCC C Executable Project
I store all my programs in a Dropbox folder; c programs go into the C folder under
C:\DATA\Dropbox\myprograms\C\
This project will be called BlinkYelLed
After clicking Ok choose your device, in this case the ATMEGA644
Atmel Studio will now look after device selection for you, you don’t need to add it anywhere else in
the program code or makefile.

879

The main window appears

880

61.3 Output window

This program can be compiled and programmed into the AVR (but it wont do anything yet)
Compile with F7 and you will see the result of compilation in the Output window.

An important thing to know here is that Atmel Studio creates a makefile for you. In other
programming environments (e.g. WinAVR) you will need to create your own (System Designer
software can create one for you or you can download one and modify it).

The think to look out for when compiling are any errors, and always check the syntax (correct
spelling and use of symbols) of your program code.

Select the tool button you created to program your chip and you will see the results of AVRDude in
the Output window.

881

61.4 Configuring inputs & outputs

In any AVR program you will have to add configuration for your I/O ports. This code was auto
generated from System Designer but is not hard to write your own once you get used to it.

DDRA – data direction register for PORTA; every AVR port (group of 8 pins) has 3 separate
registers to control and access it (a register is an address inside the microcontroller that has direct
control over the internal hardware).
DDRA register is used to control whether a pin is input or output.
PORTA register is used to change the devices attached to the pins when the pin is an output.
PINA register is used to read the pins when the pins are configured as inputs.
A really good tutorial on this is at http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/

Note that in C upper and lower case is very important DDRA is not the same as ddra.

To make pins into outputs we put a 1 into each bit of the DDR. So DDRA=0xff; means put
hexadecimal FF into DDRA it could be written in binary instead of hexadecimal as
DDRA=0b11111111;

http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/

882

61.5 Making a single pin an input

To set an individual pin (e.g. PortB.5) to an input that bit in the DDR must be set to ‘0’. To do that
use any of these lines of code

DDRB &= ~(1<<5); //uses right shift
DDRB &= _BV(5); //macro use
DDRB &= 0b00100000; // binary
DDRB &= 0x20 // hexadecimal
DDRB &= 32 // decimal
Here there are two bitwise operations the ‘~’ (not) and the ‘&’ (and)

Bitwise & means individually ‘and’ each bit of the byte.
The rules for an ‘and’ are written into a table like this.
A is one input, B is the other input and X is the output

A B X

0 0 0

0 1 0

1 0 0

1 1 1

This can be generalised to 2 rules: ‘and’ing anything with a ‘0’ makes the output a ‘0’, ‘and’ing with a
1 keeps the output the same as the input.

‘Not’ or ~ means inverse something

A X

0 1

1 0

1<<5 0 0 1 0 0 0 0 0

~(1<<5) 1 1 0 1 1 1 1 1

DDRB before 1 1 1 1 1 1 1 1

DDRB after 1 1 0 1 1 1 1 1

The effect of this is force pin 5 to low (to be an input) and to keep the others unchanged.

883

61.6 Making a single pin an output

To set an individual pin (e.g. PortB.5) to an output we must make that bit in the DDR a ‘1’ to do that
we can use any of these lines of code

DDRB |= (1<<5); //uses right shift
DDRB |= _BV(5)); //macro use
DDRB |= 0b00100000; // binary
DDRB |= 0x20 // hexadecimal
DDRB |= 32 // decimal

_BV(5) is a macro in C and when _BV(5) is found in a program it is replaced with (1<<5)
So those 2 lines of code are actually exactly the same.

Here are some crucial understandings in C that you will use lots and lots in programs.

DDRB |= (1<<5);

First (1<<5) means take a byte with 1 in it (0b00000001) and shift the ‘1’ 5 places to the left so it
becomes 0b00100000. The reason it’s in brackets is that we want it to happen as the first step in
the execution of this line of code.

So we could rewrite it now to DDRB |= 0b00100000;
This code is actually a C short cut way of writing DDRB = DDRB | 0b00100000;
C uses this concept a lot X += 1; means X = X + 1; hour -= 2; means hour = hour - 2;

The | is the symbol in C for ‘bitwise or’ we are going to do a bitwise ‘or’ between the current
contents of the register DDRB and the number 0b00100000 and put the answer back into DDRB.

‘Bitwise Or’ means individually ‘or’ each bit of the byte.
The rules for an ‘or’ written into a table are this.
A is one input, B is the other input and X is the output

A B X

0 0 0

0 1 1

1 0 1

1 1 1

This can be generalised to 2 rules: ‘or’ing anything with a ‘1’ makes the output a ‘1’, ‘or’ing with a 0
keeps the output the same as the input.

If DDRB was 0b11001000 and we ‘or’ it with 0b00100000 then we get

DDRB before 1 1 0 0 1 0 0 0

 0 0 1 0 0 0 0 0

DDRB after 1 1 1 0 1 0 0 0

 The effect of this is to force bit 5 in DDRB to be a 1 (force it to be an output), and keep the other
bits of DDRB unchanged.

884

61.7 Microcontroller type

The compiler needs to know some things about our hardware; the first is the microcontroller type.
That was setup at the beginning when the project was created however it can be changed by right
clicking on the project in the Solution Explorer and opening properties. The tabs on the side of the
project properties allow different aspects ot be seen of the project. Under Device the micro type can
be changed.

61.8 Includes

Understanding what happens with includes is a crucial part of C programming.

If the compiler cannot find a function that you used in your program code it will go looking in the file
io.h (h stands for header file) which is in the avr directory. Try and find the AVR directory on your
system, but don’t scare yourself too much by looking inside the file.

On my system this file is in:
C:\ProgramFiles\Atmel\Atmel Studio
6.0\extensions\Atmel\AVRGCC\3.4.0.65\AVRToolchain\avr\include\avr

You will find lots of other files with many functions that will have future use to you.

885

61.9 Main function

Functions are the core structure in programming; the ‘main’ program in C is where program
execution starts.
A function can be passed arguments or parameters (in this case none so the word void is used) and
it returns a value when finished executing (a value of type ‘int’)

The braces enclose everything within a function in C.

The While(1) means while everything inside the brackets () is true repeat everything inside the
braces{}. Sometimes you will see this written in programs as for(;;) which effectively means the
same thing.

886

61.10 The blinkyelled program

#define F_CPU 8000000UL
This is a macro that will be used by the compiler to calculate delay loops, and states it to be 8MHz,
without this line the program defaults to some other value (1000000) and all the timing would be
wrong.

#include <util/delay.h>
This says to the program to include any functions from this file that we use in the main program.

PORTB &= ~(1 << PORTB6); // drive PB6 low
This line is the same as earlier for driving a DDR pin low, but this time we use PORTB6; PORTB6 is
another macro and just means 6.
So these lines of code are all the same
PORTB &= ~(1<<PORTB6);
PORTB &= ~(1<<6);
PORTB &= ~_BV(6);
PORTB &= 0b01000000;
PORTB &= 0x40;
PORTB &= 64;
Why did I try and confuse you with all these at once, well that’s because when you look on the
internet you will see most of them and one of them is no more correct that another (just some are
easier to read).

887

61.11 Counting your bytes

_delay_ms(900); // delay 900 ms
This is a function call and the compiler will look for the function in the included files.
 It is in the util/delay.h
Also in util/delay.h is another function _delay_us which you can use (microseconds)

If you look inside the delay.h file the start of the function is

void _delay_ms(double __ms)
This means you can pass a big number to the function, a double is an 8byte number in C and can
include decimals. The void means that when the function is finished it doesn’t return any value to
the function that called it.

It is a bit silly to use the _delay_ms routine with an AVR as all we want is a simple delay, using
doubles where we don’t need them can create a larger program than we want.

Inside the delay.h file is another include to delay_basic.h
There are two routines in there that delay can use

void _delay_loop_1(uint8_t __count)
void _delay_loop_2(uint16_t __count)

uint8_t is an unsigned 8 bit number (a byte – stores numbers from 0 to 255
uint16_t is an unsigned 16bit number (2 bytes – stores numbers from 0 to 65535)

Now we could happily go on using _delay_ms as a routine and to be honest it doesn’t use a lot
more memory than the alternative at this stage but it is important when programming
microcontrollers to really understand what is going on and make informed decisions about what you
program code is doing. So why would you use a routine that takes a double when a uint8_t and
uint16_t are available.

Changing the program to use _delay_loop_2 saves us 4 bytes of program code.

#define F_CPU 8000000UL
#include <avr/io.h>
#include <util/delay_basic.h>
#include <inttypes.h>

int main(void)
{
 //hardware setups
 DDRB = 0xff; //make port all outputs

 uint16_t count;

 while(1)
 {
 PORTB &= ~(1 << PORTB6); // drive PB6 low
 for (count=900; count >0; count --)
 {
 _delay_loop_2(1000);
 }
 PORTB |= 1 << PORTB6; // drive PB6 high
 for (count=100; count >0; count --)
 {
 _delay_loop_2(1000);
 }
 }

888

}

Note that we have included the new file inttypes.h, otherwise our compiler will not know what an
unit16_t means.

We have now declared our first variable as well

uint16_t count;

and we have created our own delay loop

 for (count=900; count >0; count --)
 {
 _delay_loop_2(1000);
 }

Begin to get use to the way C for loops are written.
This loop means start the variable count at 900 (count=900) and while it is greater than 0 (count>0)
decrease it by 1 (count --)

We could have written it for (count =0; count <900, count++) but generally it’s is better to count
down to 0 rather than count up as microcontrollers have simpler comparisons to do when they
compare to 0 rather than other numbers. Using this up counting loop is actually more costly in terms
of flash (program memory).

_delay_loop_2(1000);
Now this _delay_loop_2(1000) is only approximately 1mS when the crystal is 8MHz, in fact it is ok
for flashing an LED but not really very accurate. Also if you change your crystal then this will be way
off.

That is the reason the function _delay_ms is often used because it hides all the calculations from us
when trying to create an accurate delay based upon the crystal frequency. And the reason it needs
to be a double is so that it can do more accurate divisions when trying to work out more exact
values.

889

61.12 Optimising your code

GCC can create programs which are highly optimised (have all the unneeded bits reduced down or
even taken out.
Open the project properties by right clicking on the project in the solution window (right click on the
project not the solution).

Slect optimization and then choose between the different levels and recompile for each one.
This program when compiled gave these different sizes based upon the optimization setting:

 None or -O0 as 408 bytes,

 -O1, -O2, -O3 at 208 bytes

 -Os at 214 bytes.

Note that if you are simulating always change to –O0 no optimization.

890

61.13 Reading input switches
 while(1)
 {
 if(~PINB & (1<<1))
 {
 PORTB &= ~(1 << PORTB6); // drive PB6 low
 for (count=0; count <900; count ++)
 {
 _delay_loop_2(1000);
 }
 PORTB |= (1 << PORTB6); // drive PB6 high
 for (count=100; count >0; count --)
 {
 _delay_loop_2(1000);
 }
 }
 }

Here we want the led to flash only when the switch is pressed.

if(~PINB & (1<<1))

Means read the state of PINB invert this PINB then ‘and’ it with 0b00000001

Here is the result when the switch is not pressed

PINB 1 0 1 0 1 1 1 1 Read the port (1 is not pressed)

~PINB 0 1 0 1 0 0 0 0 Invert the port

(1<<1) 0 0 0 0 0 0 1 0 Shift 1 to the left 1 time

result 0 0 0 0 0 0 0 0 AND the two numbers, Answer is 0 so

if test is not true

Here is the result when the switch is pressed

PINB 1 0 1 0 1 1 0 1 Read the port (0 is swtch pressed)

~PINB 0 1 0 1 0 0 1 0

(1<<1) 0 0 0 0 0 0 1 0

result 0 0 0 0 0 0 1 0 AND the two numbers, Answer is 1 so

the IF test is true

Note that way single bits are set in C programming
1 << 0 == 1
1 << 1 == 2
1 << 2 == 4
1 << 3 == 8
1 << 4 == 16
1 << 7 == 128

891

61.14 Macros

C programs can be a little difficult for new programmers to follow so it helps to add some short cuts.
Macros allow just that; we can replace hard to read lines of code like

PORTB &= ~(1<<6); // drive PB6 low

PORTB |= (1<<6); // drive PB6 high

With code such as
Clr_yel_led

Set_yel_led

We do that with #define statements at the beginning of the program code
//Hardware Macros for output ports
#define set_Yel_Led PORTB |= (1<<6) //force portb.6 high
#define clr_Yel_Led PORTB &= ~(1<<6) //force portb.6 low

Macros can be used for input testing as well
if(~PINB & (1<<1))

if(PINB & (1<<1))

can be replaced with
if (yel_sw_is_clr)

if (yel_sw_is_set)

The #define statements for these are

//Hardware Macros for input pins
#define yel_sw_is_clr ~PINB & (1<<1) //pinb.1 input low
#define yel_sw_is_set PINB & (1<<1) //pinb.1 input high
PORTB |= (1<<1); //activate pinb.1 internal pull-up resistor

When you use System Designer software to develop your block diagram this code can be auto
generated for you.

892

61.15 Auto-generated config from System Designer

The above block diagram generated the following code

//**
// Project Name: 12TCEDemoBoard
// created by:
// using block diagram: BD_1
// Date:17/05/2012 6:10:44 a.m.
// Code autogenerated by System Designer from www.techideas.co.nz
//**
// Comment next line if using WINAVR and CPU Speed is in the Makefile
#define F_CPU 8000000UL
//**
#include <avr/io.h.>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/eeprom.h>
#include <stdio.h>
#include <string.h>
#include <avr/pgmspace.h>
//#include <lcd.h>

int main (void)
{
 //**
 //Hardware definitions
 DDRA = 0xff; //make port all outputs
 DDRB = 0xff; //make port all outputs
 DDRC = 0xff; //make port all outputs
 DDRD = 0xff; //make port all outputs
 DDRB &= ~_BV(0); //set pin B.0 to input - Red_sw
 DDRB &= ~_BV(1); //set pin B.1 to input - Yel_sw
 DDRB &= ~_BV(2); //set pin B.2 to input - Grn_sw
 DDRB &= ~_BV(3); //set pin B.3 to input - Blu_sw
 DDRB &= ~_BV(4); //set pin B.4 to input - Wht_sw
 DDRA &= ~_BV(0); //set pin A.0 to input - POT
 DDRA &= ~_BV(1); //set pin A.1 to input - LM35
 DDRA &= ~_BV(2); //set pin A.2 to input - LDR
 DDRA &= ~_BV(4); //set pin A.4 to input - Ser_Rx

893

 //**
 //Hardware macros for output ports
 #define set_Grn_Led PORTB |= (1<<5) //force portB.5 output high
 #define clr_Grn_Led PORTB &= ~(1<<5) //force portB.5 output low
 #define set_Yel_Led PORTB |= (1<<6) //force portB.6 output high
 #define clr_Yel_Led PORTB &= ~(1<<6) //force portB.6 output low
 #define set_Red_Led PORTB |= (1<<7) //force portB.7 output high
 #define clr_Red_Led PORTB &= ~(1<<7) //force portB.7 output low
 #define set_Ser_Tx PORTA |= (1<<5) //force portA.5 output high
 #define clr_Ser_Tx PORTA &= ~(1<<5) //force portA.5 output low
 #define set_Backlight PORTA |= (1<<3) //force portA.3 output high
 #define clr_Backlight PORTA &= ~(1<<3) //force portA.3 output low

 //**
 //Hardware macros for input pins
 #define Red_sw_is_clr ~PINB & (1<<0) //pinB.0 input==low
 #define Red_sw_is_set PINB & (1<<0) //pinB.0 input==high
 //PORTB |= (1<<0); //activate internal pull-up resistor for pinB.0
 #define Yel_sw_is_clr ~PINB & (1<<1) //pinB.1 input==low
 #define Yel_sw_is_set PINB & (1<<1) //pinB.1 input==high
 //PORTB |= (1<<1); //activate internal pull-up resistor for pinB.1
 #define Grn_sw_is_clr ~PINB & (1<<2) //pinB.2 input==low
 #define Grn_sw_is_set PINB & (1<<2) //pinB.2 input==high
 //PORTB |= (1<<2); //activate internal pull-up resistor for pinB.2
 #define Blu_sw_is_clr ~PINB & (1<<3) //pinB.3 input==low
 #define Blu_sw_is_set PINB & (1<<3) //pinB.3 input==high
 //PORTB |= (1<<3); //activate internal pull-up resistor for pinB.3
 #define Wht_sw_is_clr ~PINB & (1<<4) //pinB.4 input==low
 #define Wht_sw_is_set PINB & (1<<4) //pinB.4 input==high
 //PORTB |= (1<<4); //activate internal pull-up resistor for pinB.4
 #define Ser_Rx_is_clr ~PINA & (1<<4) //pinA.4 input==low
 #define Ser_Rx_is_set PINA & (1<<4) //pinA.4 input==high
 //PORTA |= (1<<4); //activate internal pull-up resistor for pinA.4

 while(1)
 {
 }
}

894

61.16 Writing your own functions

Currently we have the following program, we have tidied up the code a great deal with the use of
macros but the two ‘for’ loops are very messy and clutter the structure of the code, these will be
replaced with a function

 while(1)
 {
 if(Yel_sw_is_set)
 {
 clr_Yel_Led; // drive PB6 low
 for (count=0; count <900; count ++)
 {
 _delay_loop_2(1000);
 }
 set_Yel_Led;
 for (count=100; count >0; count --)
 {
 _delay_loop_2(1000);
 }
 }
 }

The function takes a uint16_t (2 byte) number and returns void (no value)

void my_inaccurate_ms_delay(uint16_t count)
{
 uint16_t i;
 for (i=count; i>0; i--)
 {
 _delay_loop_2(1000);
 }
}

For readability the function is placed at the end of our program, however when the compiler tries to
compile the code if it comes across a call to the function before it knows what it is then it gives an
error.

So in C a copy of the function definition is placed before the main function as in the full listing
here.This is called a function prototype in C.

895

Replacing the for loop with our own function will make it
//**
// Project Name: 12TCEDemoBoard
// created by:
// using block diagram: BD_1
// Date:17/05/2012 6:10:44 a.m.
// Code autogenerated by System Designer from www.techideas.co.nz
//**
// Comment next line if using WINAVR and CPU Speed is in the Makefile
#define F_CPU 8000000UL
//**
#include <avr/io.h.>
#include <inttypes.h>
#include <util/delay.h>

int main (void)
{
 //**
 //Hardware definitions
 DDRA = 0xff; //make port all outputs
 DDRB = 0xff; //make port all outputs
 DDRC = 0xff; //make port all outputs
 DDRD = 0xff; //make port all outputs
 DDRB &= ~_BV(1); //set pin B.1 to input - Yel_sw

 //**
 //Hardware macros for output ports
 #define set_Yel_Led PORTB |= (1<<6) //force portB.6 output high
 #define clr_Yel_Led PORTB &= ~(1<<6) //force portB.6 output low

 //**
 //Hardware macros for input pins
 #define Yel_sw_is_clr ~PINB & (1<<1) //pinB.1 input==low
 #define Yel_sw_is_set PINB & (1<<1) //pinB.1 input==high
 PORTB |= (1<<1); //activate internal pull-up resistor for pinB.1

 //**
 //function prototypes
 void my_ms_delay(uint16_t count);

 //**
 while(1)
 {
 if(Yel_sw_is_clr)
 {
 set_Yel_Led;
 my_inaccurate_ms_delay(100);
 clr_Yel_Led;
 my_inaccurate_ms_delay(900);
 }
 }
}
//**
// functions
//**
void my_inaccurate_ms_delay(uint16_t count)
{
 uint16_t i;
 for (i=count; i>0; i--)
 {
 _delay_loop_2(1000);
 }
}

896

61.17 AVR Studio editor features

Notice the faint yellow line on the left hand of the
editor window; this tells you that the last change
you made was to this line and you have not saved
it yet.

Once saved it goes green.

Click on a function or define and take note of the top of the editor window as circled in red here

When my_inaccurate_ms_day is clicked these show usthe context and definition of what we click on
And allow us to jump to that definition by clicking on the GO button. Clickin on this and the editor
jumps to the function. Go into the function and click on _delay_loop_2 and the editor opens the
delay_basic.h file.

897

61.18 AVR hardware registers

We will use the understanding of this in the nextsection about writing to an LCD.
In this program we have used these macros

Now the word PORTA is a macro itself and if you select it and push the GO button it takes you to a
file that declares exactly what PORTA means here it is for the Mega644

Note thate there are three registers for this port, PORTA, DDRA and PINA

In a different micro this may be a different address
e.g in the ATMega16 and ATMega32 PORT A is in a different location to the ATMega644
here from the datasheet is a section of some of the registers

898

61.19 Character LCD programming in C

C programmingis very different to Bascom as Bascom contains a great many library of functions
that do not exist in C as it comes delivered to you in Atmel Studio.

On the internet you will find a great many functions to drive LCDs but here we will develop one
ourselves. There are a number of reasons why you should learn this.

1. You will learn about making your own header files and including them
2. You will learn about writing functions and returning values
3. The LCD libraries on the internet often use the R/W line of the LCD to read data from the

LCD, if you disconnect the LCD hardware they your prorgam can hang in a loop trying to
read the LCD.

4. You will learn how to write software to control devices yourself
5. This software will enable you to put the lcd on any pins of the microcontroller, across different

ports if you want to.

61.20 CharLCD.h Header file

This is the file that declares the information and functions for our LCD
All our functions will make use of actual hardware pins of the micro, speed of the
microcontroller,and the number of lines and the length of the line.
This part of the file would be modified by users when theyhabe different displays or connections.

899

Next we need to know about the commands that control the LCD these are declared

And lastly out CharLCD.h contains prototypes of all the functions we will write

900

CharLCD.c – the macros

These macros are shortcuts that will make our function writing a little easier, they simply set and
reset the various output pins of the micro.

901

61.21 Manipulating AVR register addresses

You will need to understand the previous short section on AVR hardware registers before
understanding this one!

There is another very important define, we have the port and pin of each connection from the
microcontroller to each LCD pin but we also need to know the data direction register of each of
these pins as well. i.e. if we have RS on PORTC.0 we need to make DDRC.0 an output.

So to figure this out we find out what the address of the PORT is (e.g. 0x08 for PORTC in our
M644) and subtract one from it to get 0x07 which is the DDR for portC.
We need to be able to do this for any port, so DDRA is 1 less than PORTA and so on.

We need to be able to find the address of a port (or any variable in RAM as well) then we do this
with the ‘’& in c. So if I use &PORTC I will get 0x08, the address of PORTC register. If I go &DDRC I
will get 0x07.

So to get DDR of any port I subtract 1 from the address of a port
e.g. &port-1

now I have the address of DDRC, next I want to be able to change its contents, so I de-reference it
with the * so when I want to change the contents of the DDR register and I only know the PORT
register
I go (*(&port-1)), this finds the address of the PORT, subtracts one to get the DDR and then I can
change the contents of the DDR

This sort of thing is used in lots of ways within C we could store 20 numbers in RAM and then get to
the numbers by knowing their addresses. We will do more of it later.

902

61.22 Writing to the LCD

We will next get an understanding of how to write to an alphanumeric LCD in 4 bit mode (our LCD
routines will not be complicated with 8 bit mode) – start by reviewing what has been written about 4
bit versus 8 bit mode elsewhere in the book under Alphanumeric LCDs.
There are many useful website that explain the use of Alphanumeric or Character LCDs.

We will need some different functions that control the LCD (we are going to totally ignore reading
from the LCD)

First there are two different different types of information we need to send to the display, the first is
data for displaying and the second is information to go into the displays control register to tell the
hardware of the LCD what to do.
The pin RS stands for register select and we tell the display whether we are sending a command to
the register by making this high or data to the memory by making this low.
Then because we are in 4 bit mode we need to send the uppr 4 bits of our 8 bit byte first the the
lower 4 bits.

Command 0 0 0 0 1 0 0 0 Command 0x08 = turn display on with

the cursor hidden

Upper 4 0 0 0 0 Send these 4 bits first

Lower 4 1 0 0 0 Send these 4 bits next

We could write two different functions like some people do the first to write commands the second to
write data, I chose to write 3 functions:
The first sends either data or commands to the display
The second sends data only using the above function
The third sends commands only using the above function

Here are the two for sending only one type, commnd or data

903

Here is the function to write either data or commands to the LCD

void lcd_write(unsigned char dat, char rs)

this line is the function name and tells us that it expects two parameters an 8 bit (unsigned char)
variable that will be called dat in this function and a char RS which will either be a 1 or a 0. It also
returns nothing after it has completed.

Next set the RS bit of the display
 if (rs) {lcd_rs_high();}else{lcd_rs_low();} //command=1 or data=0

to make my overall code clearer to read I have compressed all this onto one line ususaly we would
write it
 if (rs)
 {
 lcd_rs_high();
 }
 else
 {
 lcd_rs_low();
 } //command=1 or data=0

Note that if(rs) is a c programming convention that is an abbreviation of if (rs==1)

Now send the upper 4 bits, here is the first line
 //get upper4 bits of dat and put onto the 4 pins
 if (dat & 0x80) {lcd_dat7_high();}else{lcd_dat7_low();}

if (dat & 0x80) means if f bit7 is 1 then make the pin high else make it low.

lcd_pulse_en();

is a call to another function that makes our enable line high then waits a little bit then makes it
low.This must happen after the 4 bits have been setup on the 4 pins to the LCD.

Delay_us is an important delay to the LCD, the LCD requires a bit of time to process wat we are
telling it to do so every time we write to it we wait 100uS. Delay_us makes use of some more
complex assembly language code we will not go into.

904

61.23 Initialise the LCD

When power is applied t the LCD there is a very specific process to go through before it can be
used.

We configure the 6 interface pins as outputs.
Then we:

 Wait 20ms for LCD to power up

 Write D7-4 = 3 hex, and pulse high and low

 Wait 5ms

 Write D7-4 = 3 hex, and pulse high and low again

 Wait 200us

 Write D7-4 = 3 hex, and pulse high and low again

 Wait 200us

 Write D7-4 = 2 hex, to enable four-bit mode

 Wait 5ms

 Write Commands as required to set up the display how we want it

905

Using a logic analyser we can capture this process

Here you can see the sequence of signals after the first 20mS delay
On the left we put 0011 onto the LCD then take EN low
wait for 5mS
then en is pulsed 3 times
there is a 2mS wait
and then we send the commands to set up the display

906

61.24 lcd commands

we need a bunch of functions that send commands to the LCD

907

61.25 Writing text to the LCD

These displays require ascii characters to be sent to them such as “cat”. In C these strings are
really just arrays of chars with 0 on the end.
So cat is 4 bytes of RAM with the numbers 0x63, 0x61, 0x74, 0x00 in it.
In the AVR RAM starts at address 0x60 so our ram might look like this

Address
(hexadecimal)

Contents
(hexadecimal)

Contents
(ascii)

63 00 null

62 74 t

61 61 a

60 63 c

In our program we declare our variable animal2 by

this means allocate 12 bytes of RAM and put cat into the the first three bytes.

In our program we write code to locate the cursor and then put the string onto the LCD

and cat will appear on the display

our function to write the string to the lcd is

First when passing strings around (or any array) we don’t pass the data we pass its address.

So actually passes the address of the first character in memory to the
function and not the characters c,a,t (the address will be a number such as 0x60).

The function must be written so that it knows it is getting an address of a variable not the contents of
the variable.The de-referencing * operator is used to get the variable from an address.

908

There are other ways of doing this, here is another

Now these functions are very useful if we are manipulating strings in our programs however often
we dotn want to manipulate the string we just want something displayed on the LCD and that will
never change.
We could do either of these

and

OR

(called a string literal or
constant)

Here we declare a variable
animal3 - actually we declare a
pointer to a variable
(a pointer stores an address of a
variable)

Here just write the
characters straight into the
program

The effect of these is actually both excatly the same
The word dolphin is stored in our program and copied into RAM when
the program starts.
AND THIS IS A HUGE WASTE OF OUR PRECIOUS RAM

61.26 Program Flash and Strings

So we use another function that forces our string to be put into our program flash and used from the
program flash.
First we must include the functions that allow us to read and write into the flash

Then we declare our variable of special type

Then use the new display function

And here is our function for writing from program flash to the lcd.

909

61.27 LCD test program1
/*
 * LCD.c
 *
 * Created: 6/10/2012 8:54:41 PM
 * Author: B.Collis
 */

#define F_CPU 8000000

#include <avr/io.h>
#include <avr/pgmspace.h>
#include "CharLCD.h"
#include "util/delay.h"

const char animal1[] PROGMEM= "Giraffe"; //forces storage in flash
char animal2[12]="cat"; //stored in RAM - takes 12 bytes
char* animal3="dolphin"; //stored in RAM allocates 7 bytes
char *animal4="kangaroo";
char *animal5="monkey";
//see this website for a great tutorial on using progmem
//http://www.fourwalledcubicle.com/AVRArticles.php

int main(void)
{
 lcd_init();
 lcd_cursorOn();

 lcd_disp_str("caterpillar");//string literal or constant - copied to ram at startup

 lcd_line1();
 lcd_disp_str_P(animal1); //string in ram

 lcd_line2();
 lcd_disp_str(animal2); // string in flash

 animal2[3]='y';
 lcd_cursorXY(10,2);
 lcd_disp_str2(animal2); //string in ram

 lcd_line3();
 lcd_disp_str(animal3); // string in flash

 animal3[0]='D';
 lcd_cursorXY(10,3);
 lcd_disp_str(animal3); //string in ram

 while(1)
 {
 _delay_ms(800);
 lcd_command(LCD_CURSOR_RIGHT);
 }
}

910

61.28 CharLCD.h

Note that the first part of CharLCD.h can be automatically generated for you from System Designer

/* CharLCD.h
* Declarations for char LCD functions
*/

#ifndef CharLCD_H
#define CharLCD_H

//make sure this is the same as the crystal/R-C frequency
#define XTAL 8000000

//change these to reflect the display
#define LCD_DISP_LENGTH 20
#define LCD_DISP_LINES 4

//change these to reflect the display connections, any pin on any port
#define LCD_PORT_DAT4 PORTC
#define LCD_PIN_DAT4 2
#define LCD_PORT_DAT5 PORTC
#define LCD_PIN_DAT5 3
#define LCD_PORT_DAT6 PORTC
#define LCD_PIN_DAT6 4
#define LCD_PORT_DAT7 PORTC
#define LCD_PIN_DAT7 5
#define LCD_PORT_EN PORTC
#define LCD_PIN_EN 1
#define LCD_PORT_RS PORTC
#define LCD_PIN_RS 0

//LCD commands
#define LCD_CLR 0x01 // clear LCD
#define LCD_HOME 0x02 // clear LCD
// see animations http://www.geocities.com/dinceraydin/lcd/commands.htm for the following commands
#define LCD_INC 0x04 // decrement address counter, display shift off
#define LCD_INC 0x05 // decrement address counter, display shift on
#define LCD_INC 0x06 // Increment address counter, display shift off - default
#define LCD_INC 0x07 // Increment address counter, display shift on

#define LCD_ALL 0x0F // LCD On, LCD display on, cursor on and blink on
#define LCD_ON 0x0C // turn lcd on/no cursor
#define LCD_OFF 0x08 // turn lcd off
#define LCD_ON_DISPLAY 0x04 // turn display on
#define LCD_ON_CURSOR 0x0E // turn cursor on
#define LCD_ON_BLINK 0x0F // cursor blink
#define LCD_X0Y0 0x80 // cursor Pos on line 1 (or with column)
#define LCD_X0Y1 0xC0 // cursor Pos on line 2 (or with column)
#define LCD_X0Y2 0x94 // cursor Pos on line 3 (or with column)
#define LCD_X0Y3 0xD4 // cursor Pos on line 4 (or with column)
#define LCD_CURSOR_LEFT 0x10 //move cursor one place to left
#define LCD_CURSOR_RIGHT 0x14 //move cursor one place to right

#define LCD_DELAY 100

911

void lcd_write(unsigned char dat, char rs);
void lcd_pulse_en();
void lcd_init();
void lcd_off();
void lcd_on();
void lcd_cursorOn();
void lcd_cursorOff();
void lcd_cursorBlink();
void lcd_cls();
void lcd_home();
void lcd_cursorXY(char x, char y);
void lcd_line0();
void lcd_line1();
void lcd_line2();
void lcd_line3();
void lcd_disp_str(const char *str);
void lcd_disp_str2(const char *str); //temp
void lcd_disp_str_P(const char *str);
void lcd_disp_dec_uchar(unsigned char n);
void lcd_disp_bin_uchar(unsigned char n);
void lcd_disp_bin_schar(signed char n);
void lcd_disp_dec_uint(unsigned int n);
void lcd_dispdec_sint(signed int n);
void lcd_disp_bin_unit(unsigned int n);
void lcd_disp_bin_sint(signed int n);

#endif //CharLCD_h

912

61.29 CharLCD.c
/* CharLCD.c
* Implementation of functions that handle output to char lcd.
*/

#include <avr/io.h>
#include "CharLCD.h"
#include <avr/pgmspace.h>

#define lcd_en_high() LCD_PORT_EN |= _BV(LCD_PIN_EN);
#define lcd_en_low() LCD_PORT_EN &= ~_BV(LCD_PIN_EN);

#define lcd_rs_high() LCD_PORT_RS |= _BV(LCD_PIN_RS)
#define lcd_rs_low() LCD_PORT_RS &= ~_BV(LCD_PIN_RS)

#define lcd_dat4_high() LCD_PORT_DAT4 |= _BV(LCD_PIN_DAT4)
#define lcd_dat4_low() LCD_PORT_DAT4 &= ~_BV(LCD_PIN_DAT4)

#define lcd_dat5_high() LCD_PORT_DAT5 |= _BV(LCD_PIN_DAT5)
#define lcd_dat5_low() LCD_PORT_DAT5 &= ~_BV(LCD_PIN_DAT5)

#define lcd_dat6_high() LCD_PORT_DAT6 |= _BV(LCD_PIN_DAT6)
#define lcd_dat6_low() LCD_PORT_DAT6 &= ~_BV(LCD_PIN_DAT6)

#define lcd_dat7_high() LCD_PORT_DAT7 |= _BV(LCD_PIN_DAT7)
#define lcd_dat7_low() LCD_PORT_DAT7 &= ~_BV(LCD_PIN_DAT7)

static inline void _delayFourCycles(unsigned int __count)
{
 if (__count == 0)
 __asm__ __volatile__("rjmp 1f\n 1:"); // 2 cycles
 else
 __asm__ __volatile__ (
 "1: sbiw %0,1" "\n\t"
 "brne 1b" // 4 cycles/loop
 : "=w" (__count)
 : "0" (__count)
);
}

#define delay_us(us) _delayFourCycles(((1*(XTAL/4000))*us)/1000)

// address of data direction register of port, this is 1 less than the PORT address
#define DDR(port) (*(&port - 1))

913

void lcd_init()
{
 //setup 6 pins as outputs
 DDR(LCD_PORT_RS) |= _BV(LCD_PIN_RS);
 DDR(LCD_PORT_EN) |= _BV(LCD_PIN_EN);
 DDR(LCD_PORT_DAT7) |= _BV(LCD_PIN_DAT7);
 DDR(LCD_PORT_DAT6) |= _BV(LCD_PIN_DAT6);
 DDR(LCD_PORT_DAT5) |= _BV(LCD_PIN_DAT5);
 DDR(LCD_PORT_DAT4) |= _BV(LCD_PIN_DAT4);

 lcd_en_high();
 delay_us(20000); //power up delay
 lcd_en_low();
 lcd_rs_low();
 //Write D7-4 = 0011
 lcd_dat7_low();
 lcd_dat6_low();
 lcd_dat5_high();
 lcd_dat4_high();
 lcd_pulse_en();
 delay_us(5000);
 //repeat again
 lcd_pulse_en();
 delay_us(200);
 //repeat again
 lcd_pulse_en();
 delay_us(200);
 //Write D7-4 = 0010
 lcd_dat7_low();
 lcd_dat6_low();
 lcd_dat5_high();
 lcd_dat4_low();
 lcd_pulse_en();
 delay_us(1000);

 lcd_command(0x28); //0b0010100 is interface=4bits, 2 lines, 5*7 pixels
 lcd_command(0x06); //move cursor right after each write to the display
 lcd_command(0x01); //clear and home lcd
 delay_us(4000); //give display a chance to do the above
 lcd_command(0x0C); //display on ,cursor off, no blink
}

void lcd_write(unsigned char dat, char rs)
{
 if (rs) {lcd_rs_high();} else {lcd_rs_low();} //command=1 or data=0
 //get upper4 bits of dat and put onto the 4 pins
 if (dat & 0x80) {lcd_dat7_high();}else{lcd_dat7_low();}
 if (dat & 0x40) {lcd_dat6_high();}else{lcd_dat6_low();}
 if (dat & 0x20) {lcd_dat5_high();}else{lcd_dat5_low();}
 if (dat & 0x10) {lcd_dat4_high();}else{lcd_dat4_low();}
 lcd_pulse_en();
 //get lower4 bits of dat and put onto the 4 pins
 if (dat & 0x08) {lcd_dat7_high();}else{lcd_dat7_low();}
 if (dat & 0x04) {lcd_dat6_high();}else{lcd_dat6_low();}
 if (dat & 0x02) {lcd_dat5_high();}else{lcd_dat5_low();}
 if (dat & 0x01) {lcd_dat4_high();}else{lcd_dat4_low();}
 lcd_pulse_en();
}

void lcd_pulse_en()
{
 lcd_en_high();
 delay_us(100);
 lcd_en_low();
}

914

void lcd_off() {lcd_command(LCD_OFF);}
void lcd_on() {lcd_command(LCD_ON);}
void lcd_cursorOn() {lcd_command(LCD_ON_CURSOR);}//no blink
void lcd_cursorOff() {lcd_command(LCD_ON);}
void lcd_cursorBlink() {lcd_command(LCD_ON_BLINK);}
void lcd_cls() {lcd_command(LCD_CLR);}
void lcd_home() {lcd_command(LCD_HOME);}
void lcd_line0() {lcd_command(LCD_X0Y0);}
void lcd_line1() {lcd_command(LCD_X0Y1);}
void lcd_line2() {lcd_command(LCD_X0Y2);}
void lcd_line3() {lcd_command(LCD_X0Y3);}

void lcd_cursorXY(char x, char y){ //0,0 is top left
 if (y>=LCD_DISP_LINES || x>=LCD_DISP_LENGTH) {return;} //ignore nonsense values
 if (y==0){lcd_command(LCD_X0Y0+x);} //0x80+ x value
 if (y==1){lcd_command(LCD_X0Y1+x);}
 if (y==2){lcd_command(LCD_X0Y2+x);}
 if (y==3){lcd_command(LCD_X0Y3+x);}
}

void lcd_disp_str(const char *str) { //text string
 register unsigned char i;
 for (i=0; str[i];i++) //loop till null termination
 {
 delay_us(LCD_DELAY);
 lcd_data(str[i]);
 }
}

void lcd_disp_str2(const char *str) { //text string
 register unsigned char c;
 while ((c=*str++)){ //get contents of str then incr str
 delay_us(LCD_DELAY);
 lcd_data(c);
 }
}
void lcd_disp_str_P(const char *str) { //text string
 register unsigned char i;
 for (i=0; (char)pgm_read_byte(&str[i]);i++) //loop till null termination
 {
 delay_us(LCD_DELAY);
 lcd_data((char)pgm_read_byte(&str[i]));
 }
}

915

void lcd_disp_dec_uchar(unsigned char n) { //0 to 255
 char buffer[3];
 itoa (n, buffer,10); //decimal display of
 lcd_disp_str(buffer);
}
void lcd_disp_bin_uchar(unsigned char n) { //0 to 255
 char buffer[8];
 itoa (n, buffer,2); //binary display of
 lcd_disp_str(buffer);
}
void lcd_disp_bin_schar(signed char n) { //0 to 255
 char buffer[8];
 itoa (n, buffer,2); //binary display of
 lcd_disp_str(buffer);
}

void lcd_disp_dec_uint(unsigned int n) { //- to
 char buffer[7];
 itoa (n, buffer,10); //decimal display
 lcd_disp_str(buffer);
}

void lcd_dispdec_sint(signed int n) { //- to
 char buffer[7];
 itoa (n, buffer,10); //decimal display
 lcd_disp_str(buffer);
}
void lcd_disp_bin_unit(unsigned int n) { //- to
 char buffer[16];
 itoa (n, buffer,2); //binary display
 lcd_disp_str(buffer);
}
void lcd_disp_bin_sint(signed int n) { //- to
 char buffer[16];
 itoa (n, buffer,2); //binary display
 lcd_disp_str(buffer);
}

void lcd_command(unsigned char dat) {
 delay_us(LCD_DELAY);
 lcd_write(dat,0);
}
void lcd_data(unsigned char dat) {
 delay_us(LCD_DELAY);
 lcd_write(dat,1);
}

916

62 Object Oriented Programming (OOP) in CPP and
the AVR

The basis for OOP is that we need to effectively manage the development of large programs and those written by
multiple programmers. If we don’t then things can easily get out of control. Say two programmers are writing the
same program and the first wanted a variable to control the area of the front patio of a house and another wanted a
variable to control the size for the flat roof for the porch and both used ‘f_size’! What a mess a large program could
easily become. OOP allows programmers to manage names and structure for programs easily.

CPP (or C++ or C plus plus) is a version of the C programming language we can use to program the AVR and learn about
OOP. There are many other OOP languages including common ones such as Java and C# (C sharp).

62.1 The black box concept

In technology we use the term ‘black box’ to represent the idea that we know about an objects inputs and outputs
(structure) and its behaviour but not all the detail of how it does it. In OOP we use the same concept; we can have a
routine, function or block of program code, we know its inputs and outputs and what it does; but we don’t know
anything about what is going on inside it. We only need to know how to interact with it, what its inputs and outputs
are.
For example int factorial(int n) is a function that takes an integer, calculates the factorial for it and returns
the answer; we don’t know how it actually does the calculation just what it does it and its inputs and outputs.

The same situation exists with our AVR hardware; in an AVR we have I/O pins that we don’t know anything about
except what they do and how to use them; we are not interested in their internal workings just how to configure and
how to use them. They can be thought of as black boxes to us in technology and in programming terms we can call
these objects.

62.2 The concept of a class

In OOP we consider an I/O pin as a class, and one specific pin e.g. portD.5 is an object or an instance of the class of I/O
pin. The word ‘class’ refers to a definition for an object, just like ‘car’ is a class that defines objects with 4 wheels and a
motor and my green 1500cc manual 2009 Toyota Eco 5-door registration numberABC123 is an object or a specific
instance of class car.

OutputPin class

Before we can use an object such as an output pin we have two important things to do:

1. Define the class by defining the properties (attributes and characteristics of the objects that the class
represents) and the methods we use to interact or communicate with the object (these define operations,
functions, abilities or behaviours); we do this in the definition of the class; for instance each output pin of a
microcontroller should have properties of being high or low and a number of methods such as:

a. set it high
b. reset it low,
c. toggle it,

917

d. find out if it is high
e. find out if it is low.

2. Construct (create, instantiate) one instance of the I/O pin. Think of the class as the design or template for an
object (e.g. drawings for a stapler or pattern for a shirt) and constructing it is making one instance (making
one stapler, making a shirt). We need to instantiate the output pin on portD.5 before we can use it.

62.3 First CPP program

In CPP we write this first program that creates an instance of an output port and then toggles it on and off to make an
LED flash (this code can be autogenerated by System Designer using your block diagram)
#include "OutputPin.h" //the definition of the class OutputPin is in this file

#include "Util.h" //some useful functions we can use are found in this file

int main (void)

{

 //**

 //Hardware definitions

 //construct an instance of class output, on port D pin 5

 OutputPin led0('D',5);

 //Program starts here

 while(1)

 {

 led0.toggle();

 delay_ms(750);

 }

}

The various methods we can use to communicate with the object are found in the definition for class OuputPin in the
header file “OutputPin.h”. (In C we have two files “OutputPin.h” and “OutputPin.c”; we will focus on the .h file now
and the .c file a little later.) In “OutputPin.h” the methods we can use are defined for us.

The constructor is the first method (we can’t use an object until it is instantiated)
 OutputPin (char port, char pin);

The methods we use to communicate with the instance
void set(bool high);
 void setHigh();
 void setLow();
 void toggle();

Note
Just because we have used an I/O pin as our first object don’t just think that objects can only model concrete things
they can model conceptual things like a ‘meeting’ or a ‘time’ and they can model processes such as ‘sort’ or ‘read’, or
‘send’.

Class InputPin
Before we can connect a switch we have to instantiate (create an instance of) the class InputPin.
InputPin sw0('A',0, 1);

In the file “InputPin.h” we have the methods available to us:
The constructor for class InputPin is:
InputPin (char port, char pin, bool pullup);

This describes the input pin in terms of its register e.g PortB and its pin e.g. 3 and whether the pullup resistor is active
or not. The methods to communicate with the instance of each InputPin are:
bool isHigh();
 bool isLow();

918

62.4 Creating an AVR CPP program in Atmel Studio 6

Start Atmel Studio

Create a new GCC C++ project

It’s best to start thinking about order for your projects early on; I choose to save all my AVR projects into different
folders depending upon the language I write them in. So this will go into my folder AVR_C++. Note that even though I
don’t select Create a directory for the solution it still creates a directory CPP_AVR_1, but it doesn’t create the
subdirectories within that directory.

919

Next choose the microcontroller you will be using. You can select it from the list or type in part of the name and then
select it.

Your new program will start like this…

This program can be compiled by pressing F7.

920

62.5 Adding our class files to the project

In the folder CPPFiles under System Designer you will find a number of files, these must be added to your solution. If
you don’t see a tab labelled Solution Explorer go onto the menu and choose View then Solution Explorer.

Right click on your project and choose ADD then and Existing Item and select all the files in the folder.

In System Designer create a block diagram for your project and then automatically create the CPP code for it.

Then copy all of this program or the parts of it you want through to your CPP project.

921

62.6 First Input and output program

#include <avr/io.h>
#include "IOPin.h"
#include "InputPin.h"
#include "OutputPin.h"
#include "Led.h"
#include "CharLCD.h"
#include "AdcPin.h"
#include "Util.h"

int main (void)
{
 //**
 //Hardware definitions
 //create instances of output objects
 OutputPin led0('B',1, 0); //initially off
 //**
 //create instance of binary input objects
 IinputPin sw0('B',0, 1); //internal pullup active
 //**
 //Program starts here
 while(1)

 {
 if (sw0.IsLow())
 {
 led0.setHigh(); //on
 delay_ms(1500);
 ledD0.setLow(); //off
 }
 }
}

Take note of how we use the methods to interact with each object, this is the dot operator, it allows us to reference
the methods of the object.

Overloading
If you have been following carefully so far you will may have noticed that OutputPin has been used differently in the
above examples
In the first example the constructor was
 OutputPin (char port, char pin);

While in the second example it was
 OutputPin (char port, char pin, bool start);

This is called overloading of methods and is a neat feature of OOP that allows us a wide range of
control.

Say in C we have a function that adds two 8 bit numbers, e.g.
char add_2_numbers (char X, char Y);

What if we want a function that adds 2 16 bit numbers as well, we would have to call it a different
name e.g.
signed int add_2_16bit_numbers (signed int X, signed int Y);

This gets kind of annoying and can become confusing; in CPP there is a better way and it is called
overloading. So we can define all of these methods within one class
char add_2_numbers (char X, char Y);

signed char add_2_numbers (signed char X, signed char Y);

signed int add_2_numbers (signed int X, signed int Y);

signed long int add_2_numbers (signed long int X, signed long int Y);

922

62.7 Class OutputPin

/* OutputPin.h
* Definition of class that handles output pins.
*/

#pragma once
#ifndef OUTPUT_PIN_DEFINED
#define OUTPUT_PIN_DEFINED

#include <avr/io.h>
#include "IOPin.h"

class OutputPin : public IOPin
{
public:
 /* constructors */
 OutputPin(char port, char pin, bool start);
 OutputPin(char port, char pint);

 void set(bool high); // set high if true, low if false
 void setHigh();
 void setLow();
 void toggle();

};

#endif //OutputPin

62.8 Class InputPin

/* InputPin.h
* definition of class that handles input pins
*/
#pragma once
#ifndef INPUT_PIN_DEFINED
#define INPUT_PIN_DEFINED

#include <avr/io.h>
#include "IOPin.h"

class InputPin: public IOPin
{
public:
 //constructor

 InputPin (char port, char pin, bool pullup);

};

#endif //INPUT_PIN_DEFINED

923

62.9 Inheritance

Do you notice that the class InputPin has the ability to read whether the PIN is high or low but that the two functions
to do these are not actually inside In.h

The classes InputPin and OutputPin are actually derived from another class called IOPin, and so any functionality in
IOPin is inherited by the classes INPUT_PIN and OutputPin

This inheritance relationship is declared in the lines in the header files (.h files)
class InputPin: public IOPin
class OutputPin : public IOPin

62.10 Class IOPin

The file IOPin.h is
/* IOPin.h
* definition for class that handles control of i/o pins
*/
#pragma once
#ifndef IOPIN_DEFINED
#define IOPIN _DEFINED

#include <avr/io.h>

class IOPin
{
public:
 // constructor
 IOPin(char port, char pin);

 bool isHigh();
 bool isLow();
 inline uint8_t getBit() const {return avrBit;}; // we won’t cover inline or const yet
 inline bool isValid() const {return pinValid;};

protected:
 void setAsInput();
 void setAsOutput();
 void activatePullup();
 void deActivatePullup();

private:
 uint8_t avrPin; // The bit mask for this pin
 volatile uint8_t* portReg; // The port register
 volatile uint8_t* pinReg; // The PIN register
 volatile uint8_t* dataDirReg; // The data direction register
 bool pinValid; // Does the constructor define a valid pin
};

#endif

Any instance of class INPUT_PIN and class OutputPin has access to the functions IsHigh() and IsLow() because they
inherit those methods from class IOPin.

924

62.11 Encapsulation

The methods and properties of class IOPin are declared in two different sections of the class. Public and Private. A
programmer doesn’t normally give direct access to the data or properties within a class they do it via methods that
define the exact nature of the control we want to release to the outside world. This is the concept of encapsulation
and is one of the most powerful aspects of OOP; the programmer who writes the class defines what information is
public and what is private. The programmer who uses the object can have access to public things inside the object;
e.g. with a car we have public access to the brake, hand brake, accelerator etc. We don’t have access to the
distributor, brake pads and wiper motors directly these are private. This shows us one major power of OOP in that
there is the ability to hide or protect properties or internal data from being set into some incorrect state.

62.12 Access within a class

In the IOPin class there are three different levels of access given to users of the class: Public, Protected and Private.
Why? Well it’s all about control, what attributes we give users of the class.

There are some things that anyone who uses the class must have access to, these are the public things.
We don’t want any old program or programmer changing the IO port or pin or validity of the pin directly so we make
these private.

But classes that inherit IOPin can have some other protected access as well, so class OutputPin and InputPin can set
the pin as input or output and activate the pullup resistor or deactivate it; whereas the programmer who writes a
normal application and just uses IOPins doesn’t need this level of control.

Access public protected private

same class Yes Yes Yes

derived class Yes Yes No

Not related Yes No No

Notice in the above descriptions the different words ‘uses’ and ‘inherits’. This distinction is very important in OOP. We
often refer to it as ‘is a’ (inherits) or ‘has a’ (uses) type of relationship. InputPin inherits from IOPin so it ‘is a’
therefore it has access to all the public and protected things in IOPin. A class that uses an IOPin will not have access to
the protected things inside IOPin just the public things.

So when you define InputPin you want to be able to change the IOPin to an input using the method setAsInput(); but
when you make some device that uses an InputPin you don’t want it to be able to change it from input to output.

925

62.13 Class Char_LCD

Here we will look at a ‘uses a’ type of relationship. A character LCD uses 6 pins of the microcontroller (it doesn’t
extend or inherit from the OutputPin class).

/* CharLCD.h
* definition of class that handles Character LCDs.
 note that he rw pin is unused
*/

#pragma once
#ifndef CharLCD_DEFINED
#define CharLCD_DEFINED

#include <avr/io.h>
#include <stdlib.h>
#include "Output_pin.h"
#include "IOPin.h"
#include "Util.h"

//some commands take time for the LCD to process
const int LCD_DELAY_US=100;
const int LCD_DELAY_MS=2;

//LCD commands
#define LCD_CLR 0x01 // clear LCD
#define LCD_HOME 0x02 // cursor to home position
// see animations http://www.geocities.com/dinceraydin/lcd/commands.htm for the following commands
#define LCD_SHIFTDEC 0x04 // decrement address counter, display shift off
#define LCD_DEC 0x05 // decrement address counter, display shift on
#define LCD_INC 0x06 // Increment address counter, display shift off - default
#define LCD_SHIFTINC 0x07 // Increment address counter, display shift on

#define LCD_ALL 0x0F // LCD On, LCD display on, cursor on and blink on
#define LCD_ON 0x0C // turn lcd on/no cursor
#define LCD_OFF 0x08 // turn lcd off
#define LCD_ON_DISPLAY 0x04 // turn display on
#define LCD_ON_CURSOR 0x0E // turn cursor on
#define LCD_ON_BLINK 0x0F // cursor blink

926

#define LCD_X0Y0 0x80 // cursor Pos on line 1 (or with column)
#define LCD_X0Y1 0xC0 // cursor Pos on line 2 (or with column)
#define LCD_X0Y2 0x94 // cursor Pos on line 3 (or with column)
#define LCD_X0Y3 0xD4 // cursor Pos on line 4 (or with column)
#define LCD_CURSOR_LEFT 0x10 //move cursor one place to left
#define LCD_CURSOR_RIGHT 0x14 //move cursor one place to right
#define LCD_BUSY 0x80 /* DB7: LCD is busy- not used */

class CharLCD
{
public:
 /* constructor */
 CharLCD(OutputPin* lcdRs, OutputPin* lcdEn, OutputPin* lcdD4, OutputPin* lcdD5, OutputPin*
lcdD6, OutputPin* lcdD7, char lcdChars, char lcdLines);

 void init(); //Initialise the display, this is called by the constructor so
users do not normally need to call it
 void Off();
 void On();
 void cursorOn();
 void lcd_cursorOff(); //default
 void cursorBlink();
 void cls();
 void home();
 void cursorXY(char x, char y);
 void line0();
 void line1();
 void line2();
 void line3();
 void disp(const char *str);
 void disp(signed char n);
 void disp(uint8_t n);
 void disp_bin(uint8_t n);
 void disp_bin(signed char n);
 void disp(unsigned int n);
 void disp(signed int n);
 void disp_bin(unsigned int n);
 void disp_bin(signed int n);

private:
 void command(uint8_t dat);
 void lcd_data(uint8_t dat);
 void lcd_write(uint8_t dat, char rs);
 void lcd_pulse_en();
 uint8_t rows;
 uint8_t cols;
 OutputPin* _rs;
 OutputPin* _rw;
 OutputPin* _en;
 OutputPin* _dat4;
 OutputPin* _dat5;
 OutputPin* _dat6;
 OutputPin* _dat7;
};

#endif

There are a great many methods in this class, note that not all are public. The methods: command, lcd_data, lcd_write,
lcd_pulse are private, so that means only this class has access to them.

Take note of the constructor it is quite long because we have to pass 6 pins and 2 other variables as parameters to it
for the connections and the size of the LCD.

CharLCD(OutputPin* lcdRs, OutputPin* lcdEn, OutputPin* lcdD4, OutputPin* lcdD5, OutputPin* lcdD6,
OutputPin* lcdD7, char lcdChars, char lcdLines);

927

 Note that the class has pointers to other classes passed to it. So to use the CharLCD class we need to instantiate 6
OutputPin objects and pass their addresses to CharLCD instance like this

 OutputPin lcd_rs('C',0);
 OutputPin lcd_en('C',1);
 OutputPin lcd_dat4('C',2);
 OutputPin lcd_dat5('C',3);
 OutputPin lcd_dat6('C',4);
 OutputPin lcd_dat7('C',5);
 CharLCD lcd(&lcd_rs, &lcd_en, &lcd_dat4, &lcd_dat5, &lcd_dat6, &lcd_dat7, 20, 4);

After that we can use the LCD with the ‘disp’ methods e.g.
lcd.disp("Hello Planet Earth");

If using System Designer the code can be automatically generated and produces this:
//**
// Project Name: Project
// created by: BC - first created on Tue Aug 7 2012
// using block diagram: BD_3
// Date:19/08/2012 8:54:31 p.m.
// AVR CPP Code auto-generated by System Designer from www.techideas.co.nz
//**

#include <avr/io.h>
#include "IOPin.h"
#include "Input_pin.h"
#include "Output_pin.h"
#include "LED.h"
#include "CharLCD.h"
#include "AdcPin.h"
#include "Util.h"
#include "Timer2.h"

int main (void)
{
 //**
 //Hardware definitions
 //create instances of output objects
 OutputPin LCD_BL('C',7, 1);
 OutputPin led0('B',1, 0);
 //**
 //create instances of binary input objects
 INPUT_PIN sw0('B',0, 1); //internal pullup active
 //**
 //create instances of ADC input objects
 //**
 //**
 //Character LCD config
 OutputPin lcdRs('C',0);
 OutputPin lcdEn('C',1);
 OutputPin lcdD4('C',2);
 OutputPin lcdD5('C',3);
 OutputPin lcdD6('C',4);
 OutputPin lcdS7('C',5);
 CharLCD lcd(&lcdRs, &lcdEn, &lcdD4, &lcdD5, &lcdD6, &lcdD7, 20, 4);
 lcd.init();
 lcd.disp("Project");
 //Dimension Global Variables
 //Initialise variables
 //**
 //Program starts here
 while(1)
 {
 }
}
//**

928

62.14 Exercise – create your own Led class.

An Led is really just an output pin and we don’t really need to create a class for it but it is a useful first exercise in
creating a class.

We will need 2 files Led.h and Led.cpp

Led.h
This tells us about the constructor and that it requires a port and a pin
It defines two funtions for us on() and off(), both return no value.
/*
 Led.h
 definition of class that controls pin as an Led
*/

#pragma once
#ifndef LED_DEFINED
#define LED_DEFINED

#include "OutputPin.h"

class Led : public OutputPin{

public:
 Led(char port, char pin);

 void on();
 void off();
};

#endif

Led.cpp
This is the file with the actual code in it.
/* Led.h
* Definition of class that handles an Led.
*/

#include <avr/io.h>
#include "Led.h"

Led::Led(char port, char pin)
: OutputPin(port, pin, false)
{
 off(); //initially turn it off
}

void Led::on()
{
 setHigh();
}

void Led::off()
{
 setLow();
}

Here you will see that an on command just sets the pin to high and an off command just sets the pin to low.

929

930

63 Alternative AVR development PCBS

63.1 ATTiny461 breadboard circuit

Complete the
layout design for
the above circuit
on the breadboard
diagram.

It helps to put a
label on top of the
IC with the pin
connections on it
so that you can
easily identify
which pin is
which.

931

63.2 Alternative ATMega48 breadboard circuit

Breadboard layout

932

ATMega48/88 Devel PCB V2A

This schematic shows two programming connectors, the upper one is the standard ATMEL 10 pin
programming connector as used in the USBASP programmer. The second is the modified version
we have used at MRGS for many years with the parallel port. These connectors are designed to be
soldered to the bottom or track side of the PCB so that the LCD doesn’t interfere with the
programming connector

933

934

63.3 Alternative ATMega breadboard circuit

935

63.4 AVR circuit description

 The 5 pin header (connector) is for programming the AVR from a PC.

 The 0.1uF capacitor between 0V and VCC is to reduce any variations in power supply
voltage.

 The 10k is a pull-up resistor for the reset pin, a low (connection to ground) on this pin will halt
the microcontroller and when it is released(pulled high by the resistor) the program will run
from the beginning again.

 The 1N4148 is a protection diode that will stop high voltages possibly damaging the
microcontroller (it is only required on the reset pin because all the other microcontroller pins
have built in protection diodes).

 The 0.1uF capacitor and 100R resistor are the power supply for the ADC circuit

936

63.5 ATMega on Veroboard

Veroboard is a smart PCB that already has holes and track. It is mre reliable and permanent than
breadboard but not so easy to modify. It is much quicker to use than making a PCB when you are
designing a single circuit.

Here is an AVR schematic using an ATMega

937

938

63.6 Different microcontroller starter circuit

In the code throughout this book different AVR microcontrollers are referred to in different places.
So take special note of the $regfile and $crystal commands used and make sure they match the
micro you are using. Note that the microcontroller all run by default at 1,000,000MHz however
many of the ATMega circuits have been changed to run at 8,000,000 MHz.

You will also have to make changes to the ports used in the program: the ATTiny461 has ports A &
B, the ATMega48 has B, C & D, the ATMega chips have ports A, B, C & D.

63.7 Getting started code for the ATMega48

The code for the ATmega48 is similar to the ATTiny461; the code changes are underlined below

'Flash1led.bas for the ATMEGA48
'B.Collis June 1009

$regfile = "m48def.dat" ' bascom needs to know our micro
$crystal = 1000000 ' bascom needs to know how fast it is
going

Config Portb = Output 'make these 8 micro pins outputs
Const Flashdelay = 100 ' preset how long a wait will be

Do
 Set PortB.7 ‘ LED 7 on
 Waitms Flashdelay ‘wait a preset time
 Reset PortB.7 ‘LED 7 off
 Waitms Flashdelay 'wait a preset time
Loop 'return to do and start again
End

939

63.8 Getting started code for the ATMega16

The code for the ATMega is similar to the ATTiny461; the code changes are underlined below

'Flash1led.bas for the ATMEGA16I
'B.Collis June 1009

$regfile = "m16def.dat" ' bascom needs to know our micro
$crystal = 1000000 ' bascom needs to know how fast it is
going

Config Portd = Output 'make these 8 micro pins outputs
Const Flashdelay = 100 ' preset how long a wait will be

Do
 Set PortD.7 ‘ LED 7 on
 Waitms Flashdelay ‘wait a preset time
 Reset PortD.7 ‘LED 7 off
 Waitms Flashdelay 'wait a preset time
Loop 'return to do and start again
End

Note the change to $regfile

940

63.9 Early ATMega boards

8535 Version 1 (OLD)

 8535 Version 1A (OLD)

941

Version 1A schematic (OLD)

942

Version 1A pcb layout

943

63.10 AVR Development Board 2

 These are useful for small projects and are still available in the workshop

944

63.11 Dev board version 2 circuit diagram

945

63.12 Dev board pcb layout version 2

946

63.13 ATMEGA V4b development board circuit – 12TCE 2011

947

63.14 V4b devboard
layout 12TCE 2011

948

63.15 ATMega Dev PCB V5DSchematic (2012)

A – ATMega16
B – Reverse polarity
protection diode
C – 7805 voltage regulator
with input and output filte
capacitors
D – 0.1uF (100nF) power
supply filter capacitors
around the board
E – I/O ports (32)
F – Programming
Connector
G – Reset circuit
H – ADC power supply
circuit
I – LCD connector
J – Contrast adjustment
K – FET backlight control
circuit
L – backlight current limit
resistor

949

63.16 ATMega Dev PCB V5DLayout (2012)

950

63.17 ATMega Dev PCB V5D Copper (2012)

951

63.18 Year10 ATTiny461 V3d development board

952

953

954

63.19 Year11 ATTiny461 V6d development board

A – see both connections, 5V and GNd
(ground or negative), make sure the
maximum voltage is 5V.
B – the 100uF capacitor is to absorb any
variations in voltage from the power
supply.
C – the 0.1uF capacitor is to absorb and
fast variations in the voltage caused by
the switching of the very rapid
microcontroller
D – the programming connector
E – the reset circuit: the 10k resistor
connects the reset line to 5V allowing the
microcontroller to run programs, if left
unconnected it might drift, if shorted to
gnd then the micro will stop.
The diode is a protection diode to stop
any voltage higher then 5V on the reset
line damaging the microcontroller (all the
other pins have diodes built in)
F the connector for the LCD, no wiring is
shown
G – the I/O connections – note that B0,
B1 & B2 are shared with the
programming connector which
somewhat limits what can be connected
to them

955

63.20 ATTiny461 V6d development board layouts

956

63.21 ATTiny461 V6b development board images

957

63.22 ATMega 48 Dev PCB 2A

958

959

63.23 ATMEGA Protoyping board

This board is available from
Sure Electronics

960

63.24 128x64 GLCD Schematic – VerC -data on portB

961

63.25 128x64 GLCD Layout – VerC –data on portB

962

63.26 128x64 GLCD Schematic – VerD -data on portB

963

63.27 128x64 GLCD Layout –VerD -data on portB

964

63.28 GLCD 192x64 schematic

The 7 data lines for the
GLCD are not shown
connected on this, they
were added to the board
later as per the software
setup in the Temperature
Tarcker project earlier in the
book.

965

63.29 GLCD 192x64 layout

966

63.30 ATMEGA microcontroller pin connections

Fill out this form for your development board as you use it

Port Pin
Second
Function

Direction Connected to To control/sense

A.0 ADC 0 I / O

A.1 ADC 1 I / O

A.2 ADC 2 I / O

A.3 ADC 3 I / O

A.4 ADC 4 I / O

A.5 ADC 5 I / O

A.6 ADC 6 I / O

A.7 ADC 7 I / O

B.0 Timer0 Input

B.1 Timer1 Input

B.2 I / O

B.3 I / O

B.4 I / O

B.5 MOSI-Prog I / O

B.6 MISO-Prog I / O

B.7 SCK-Prog I / O

C.0 I / O

C.1 I / O

C.2 I / O

C.3 I / O

C.4 I / O

C.5 I / O

C.6 32768 xtal I / O

C.7 32768 xtal I / O

D.0 Serial rx I / O

D.1 Serial tx I / O

D.2 Interrupt0 I / O

D.3 Interrupt1 I / O

D4 T1 out I / O

D.5 I / O

D.6 ICP I / O

D.7 I / O

967

63.31 ATMEGA16/644 40pin DIP package– pin connections

968

64 Eagle - creating your own library
This requires copying components from an existing library into a new library and then
modifiying them.

From the Eagle
Control Panel
Select File – New
– Library

A new [empty]
library will open
Save it into a
suitable location

969

In the eagle control panel expand the libraries

Then expand the library you want to copy a device from and right click on the device, and it
can be copied to the open library (it will copy the symbol, package and device)

970

Within your own library you can now modify the package by selecting the package button from
the toolbar

Then select the package you want to modify from the next window and click on OK

971

The package editor opens, type grid mm into the text area and press enter

972

Change the drill hole size for the pads, and click on each pad to change its hole size.

973

When you have finished adding components and editing them, save and close your library.

974

In Eagle control panel open Options then Directories from the menu and then 1. Click in the
librbaires area, browse to your new folder (you can select the folder, you don’t select the library
itself) and 2 the link will appear in your libraries path.

In the main control panelbrose under libraries to your new library and make sure the dot is
green, if it’s not then right click on the librbay and select USE.

975

64.1 Autorouting PCBS

Learning to autoroute pcbs is like learning to drive a big truck; it can be a bit dangerous in the
hands of someone who can’t already drive! So don’t think you will auto route your first few
boards, learn the basics about laying out PCBs especially about minimising cross overs at the
ratsnest stage.

You will have to setup the DRC in Eagle in the layout editor. Before you run the autorouter.

976

And in the layout editor choose route and make sure Top is set to N/A.

977

65 Practical Techniques

65.1 PCB Mounting

978

65.2 Countersink holes and joining MDF/wood

For CSK POZI Twinthread 4x1/2 Zinc plated screws

 Hold or clamp both pieces together in their final position

 Drill 2mm pilot hole through both pieces (this helps it all line up properly)

 Dill 3mm pilot hole through top piece

 Countersink the top piece so that the screw head sits flush in the MDF

 Use pozidrive screwdriver to drive screw
– DO NOT OVER TIGHTEN

979

65.3 MDF

3mm/10mm thick, manmade, composite or engineered wood
Properties:

 Less expensive than many natural woods

 No grain on the surface, so no tendency to split. It does have grain into the edge
and screws will generally cause it to split

 Consistent in strength and size

 Flexible - can be used for curved surfaces, will
bend under weight.

 Edges are smooth and need no filling like ply
when finishing

 Shapes well.

 Heavier than plywood or chipboard (the resins
are heavy)

 Swells and breaks when waterlogged

 May warp or expand if not sealed and exposed
to moisture

 Dulls blades more quickly than many woods

 Made with urea formaldehyde resins which may cause eye and lung irritation
when cutting and sanding. Repeated exposure over many years to dust (all
wood dusts) increases the risk of nasal cancers

Processes available in class:

 Marking out, pencil, square, ruler – measure to within 1/2mm

 Drilling – drill press or battery drill. Drill bits, spade bits, holesaws

 Cutting - band saw for longer cuts, large pieces straight cuts only , scroll saw for
small cuts and radius, sanding (hand, machine)

 Sanding – hand sanding preferred, belt sander is too aggressive as the wood is
soft.

 Gluing and Nailing – done together, nailing on its own will not hold, glue used is
PVA, make sure glue covers the full edge, quickly wipe excess of with a damp
(not wet) cloth. Nails or screws should be 25mm from end when screwing into
and edge

 Milling – circles, slots, needs solid surface underneath to avoid cracking out,
timber can burn

http://www.nelsonpine.co.nz/School.htm
http://www.thelaminexgroup.co.nz/pdf/products/TLG6013%20LakepineBroc.pdf
3mm cost: $3.75 per m2 10mm cost:$9.30 per m2

65.4 Plywood

manmade, composite or engineered wood

Properties:

 9mm thickness

 Very strong

 resistance to cracking, shrinkage, twisting/warping,

 can be manufactured in sheets far wider than the trees from which it
was made

 Economical and effective utilisation of wood

 Light weight

 Veneered – nicer timber on the outer

 This ply is suitable for both internal and external use (water proof
glues)

 Marking out, square, ruler –
measure within 1/2mm
accuracy

Processes available in class:

 Drilling – drill press or battery
drill. Drill bits, spade bits, hole
saws

 Cutting - band saw for large
pieces, longer cuts, straight
cuts only – safety, scroll saw or fret saw for small cuts and radius,
sanding (hand, machine)

 Sanding – hand sanding or belt sander

 Milling – circles, slots, needs solid surface underneath to avoid
cracking out

 Gluing and Nailing – done together, nailing on its own will not hold
well together, glue used is PVA, make sure glue covers the full edge,
quickly wipe excess off with a damp (not wet) cloth

 Wood screws - can screw into the edge of plywood if the screw is no
larger than 1/3 the thickness of the timber

9mm ply cost: $18.28 per m2

980

65.5 Acrylic

(Polymethyl methacrylate)- 3mm
thick clear

Properties

 Thermoplastic - it will soften when heated
so it can be formed into different shapes
easily.

 Hard and Rigid

 Good surface finish

 Scratches easily

 Liable to crack not bend when cold

 Has a thin covering on both faces to protect it from scratching, do not remove

Processes available in class:

 Marking out, pen, square, ruler – measure within 0.5mm accuracy

 Drilling – drill press or battery drill. Drill bits, no spade bits or hole saws, needs
solid surface underneath to avoid cracking

 Milling – circles, slots, needs very solid surface underneath to avoid cracking

 Cutting - band saw for large pieces, longer cuts, straight cuts only – scroll saw
for small cuts however as the scroll saw cuts the material the cut is very thin
and the acrylic is heated causing the cut to melt back together

 Sanding – hand sanding or belt sander (larger pieces on edges only), use
progressively finer sand paper to polish to get a glassy edge finish

 Bending – use the strip heater, support the material on both sides until soft
enough to bend easily. Hold in shape required until cool, can be cooled under
cold water, remove the clear covering before heating

 Gluing, special glue is required, avoid skin contact

 Nuts and bolts washers

 Tapping

3mm Acrylic cost: $43.72 per m2

65.6 Electrogalv

0.8mm thick, zinc coated mild steel in lengths of 1200 and
widths of 120, 150, 180, 220, 250, 280, 300mm

Properties

 Very strong

 Avoid scratching the surface to remove the coating

 Will bend under excess weight

 Strengthened by bending

 can be painted easily

Processes available in class:

 Marking out, scriber, square, ruler – measure
within 0.5mm accuracy

 Drilling – drill press or battery drill. Drill bits,
no spade bits or hole saws, needs solid
surface underneath to avoid distorting the
steel. Must centre punch before drilling too
stop the drill wandering while drilling. With
holes larger than 5mm use a small (3mm) drill
to make a pilot hole first.

 Cutting – guillotine, shears, tin snips
(absolutely not the bandsaw)

 Bending – use magnabender

 Filing, file all edges to remove burrs (sharp
points) and smooth corners

 Nuts and bolts - removable

 Machine screws – removable

 Rivnuts - removable

 Pop-rivets - permanent

 Spot welding – permanent

 Nibbler – rectangular holes

0.8mm Electrogalv cost: $33 per m2

981

65.7 Choosing fasteners

Countersunk Machine Screw

Pan Head Machine Screw

Nyloc (nylon locking insert)
Nut

Rivnut

Self Tapping Screw

Countersunk Wood screw

Jolt head panel pin (nail)

Hinge

Name the different fasteners used

 From Wood From Metal From Acrylic

To
Wood

To
Metal

To
Acrylic

982

65.8 Workshop Machinery

 Give its name – materials used for and key safety considerations

983

984

65.9 Glues/Adhesives

PVA – (wood to wood)
Polyvinyl acetate is a water based adhesive which is coloured white.
PVA works when it soaks into the surface of the wood and sets once all the water is absorbed.
 PVA makes an extremely strong bond and is often stronger than the actual wood fibres itself. PVA is good to for gluing wood to fabric.

Solvent cement – (plastic to plastic)
There are many types of solvent cement however the most common is dichloromethane.
Dichloromethane works by dissolving the surface of hard plastics such as Acrylic and High impact polystyrene.
Solvent cement is very dangerous and will give off fumes so it is important to use this within a well ventilated room.
Solvent cement is good to for gluing plastic to plastic.

Hot glue guns – (Card to card / modelling)
Hot Glue guns are used a lot in schools for quick modelling of work.
However these can be rarely used on final products as it is not strong enough.
Hot Glue guns are good to for gluing card to card and modelling materials together.

ADOS F2 – Almost anything to anything
ADOS is a contact adhesive, you apply it to both parts and then leave them to dry
Line up the two parts extremely accurately and press firmly together, once they touch they cannot be moved
It can be messy so not good for things that need to look nice.

985

65.10 Wood Joining techniques

When using a style of wood joint choose the most appropriate and say why you chose it.

USEFUL WEBSITE www.mr-dt.com

Wood - Mitre Joint

Wood - Butt Joint

Wood – Lap Joint

Wood - Housing Joint

Wood – Screws

Wood – Block Joint

http://www.mr-dt.com/

986

65.11 Codes of Practice for student projects

Codes of practice are industry recognized ways of carrying out work on your project, so that it is safe for users and provides reliable operation.

Materials and processes
materials used suit the final situation
processes used (e.g. joints) suit the final
situation
no sharp parts or sharp corners
no loose or small parts

Environmental
discuss any recycled or recyclable
materials used
discuss any hazardous materials used
discuss any hazardous waste generated

Legal
laws/regulations e.g. for children's toys
electrical laws ECP50 & AS/NZS3820
copyright laws, is your work original?
If another’s logo is used, was it
authorised?
note owners do not like their logos
modified.

Documentation / user instructions
clear explanations for end users
care instructions for the product
warnings of hazards

PCB CAD design
System block diagram is drawn first
Schematic layout guidelines
Circuit is laid out to follow block diagram
0V or GND wires are at bottom of schematic
+V or battery connections are at top of schematic
use European symbol standards
minimise crossovers of lines in schematic
components correctly chosen for size and rating
use nets not wires in schematics
use junctions to show joining of nets
all components named and given values
name, date and version on schematic
PCB layout guidelines
layout size and shape to suit case limitations
place large components first
minimize ratsnest crossovers
no tracks between pins of an IC
track width minimum 0.04”
track spacing minimum 0.025”
large pad sizes for wires off the board
add pcb mounting holes to layout
add places for cable stress relief to layout
name, date and version on layout
avoid excessive track length
minimize board size
placing of decoupling capacitors next to IC’s

Electronic work
good solder joints
wire insulation stripped correctly
no loose or cut strands of wire
no splashes of solder
no holes in solder joints
circuit boards securely mounted
batteries securely mounted
no stress on wires
no sharp edges of case to damage wires
heat shrink used to cover solder joints to stop
shorting and provide mechanical strength
label all user controls

Software
intuitive operation for users
files are backed up often to other locations
files are progressively kept
title block at beginning of code to explain
operation
comments used throughout code to explain
function
constants are used instead of values
code broken up into subroutines or procedures
labels and variables have useful names
modifications are recorded

987

65.12 Fitness for purpose definitions and NZ legislation
A product that has been manufactured to a standard that is acceptable to the end user.
http://www.sinclair-consultancy.sagenet.co.uk/glossary.htm
A criteria used in evaluating a product; the evaluator asks how well the product performs the function for which it was
designed. If the product performs well then the product is said to have fitness for purpose
http://www.primarydandt.org/learn/glo_0000000323.asp
The notion derives from manufacturing industry that purportedly assesses a product against its stated purpose. The purpose
may be that as determined by the manufacturer or, according to marketing departments, a purpose determined by the needs
of customers. http://www.qualityresearchinternational.com/glossary/fitnessforpurpose.htm

'Fitness for purpose' is commonly used to judge the ability of an outcome to serve its purpose in 'doing the job' within the
intended location, where the 'job to be done' is clearly defined by the brief. Referring to 'fitness for purpose' in its broadest
sense within technology education, correlates to an extension of this usage to include the determination of the 'fitness' of the
practices involved in the development of the outcome, as well as the 'fitness' of the outcome itself, for the identified purpose.
Extending the concept in this way is an attempt to locate both the concept and its application within a sociocultural
understanding of the nature of technological practice whereby the performance of outcome is but one of the factors that
justifies a positive ‘fitness for purpose’ judgment.
http://www.techlink.org.nz/glossaryitem.htm?GID=2

NZ Legislation: Guarantee of fitness for particular purpose under the Consumer Guarantees Act
The Consumer Guarantees Act (CGA) is about the quality of goods and services. It offers protection to customers who have
had poor quality work carried out for them by a tradesperson or purchased goods, from a person in trade, that do not meet
reasonable expectations. The work you do must achieve any particular result the customer wants and has told you about.
e.g., John wants a drainage system that will stop his lawn from flooding every time it rains.
You must tell the customer before you start the job if you can't guarantee that the job you do will achieve the purpose or the
result they want. Otherwise you will be liable under the Act for not having achieved the desired purpose. This guarantee
applies to particular purposes that the customer has told you about. Normal purposes for the work you are doing will be
covered by the guarantee that you will use reasonable care and skill.
Does the customer have to specifically tell me what they want?
If the purpose they want to achieve is a normal purpose then the customer does not have to specifically state it.
e.g., if a customer wants a tap replaced it is obvious that they will want the tap to turn on and off and to deliver a reasonable
flow of water. Where the result wanted is less ordinary the customer must let you know exactly what they want.
e.g., if Rita wants a particular pattern for her paving stones she must tell you exactly how she wants it done.
Writing down exactly what you have agreed to do in a written quote or contract is a good way of avoiding any debate about
what was agreed.
What if I can't be expected to know if it will work?
Sometimes it will be obvious that the customer can't expect to rely on your skill to achieve the desired result.
e.g. , Julie ask the painter to cut back a tree that will get in the way of the painting. The painter agrees and charges for the
time it takes. The tree dies and Julie wants the painter to pay compensation. Julie knew that the painter was not a tree
surgeon and that she couldn't rely on the painter having the skill to trim the tree successfully.
Sometimes you may want to tell the customer that you can't guarantee that you have the skills to do the job.
e.g., Fran's car has a recurrent problem with the generator. The mechanic at her local garage has looked at it once and told
her it is a job for an auto-electrician. Fran asks him to have another look at it anyway as she doesn't want to have to take the
car to an auto-electrician in town. In this case the mechanic has told the customer that they may not have the specialist skills
needed. Fran will not be able to claim that the work was not fit for the purpose.
If you are in a similar situation you must make it clear to your customers that you may not have the skills required.
What if the customer has chosen the cheapest option?
Sometimes the customer will ask you to use the cheapest option. e.g., Jan asks her painter to put only one topcoat on her
house as she plans to sell it. Bruce is told that his radiator needs a new core. Bruce says he can't afford it and asks the
garage to just solder up the leak. In these cases the result may be less fit for its normal purpose than if the customer had
been prepared to pay the extra money for the second coat of paint or the new radiator core. You may want to get the
customer's agreement in writing that they have chosen the cheaper option.
e.g., we have repaired this radiator by soldering the leak as requested. In our opinion the radiator core needs replacing.
You must still guarantee the quality of the work done but clearly there will be a lower expectation on the work. You should not
use wording such as "This work is not guaranteed". This could be interpreted as an attempt to contract out of the Consumer
Guarantees Act.
http://www.consumeraffairs.govt.nz/businessinfo/cga/services.html#purpose
Using the “definitions and comments above, comment on your projects “fitness for purpose” with regard to your stakeholder’s
specifications.
N.B. Even though you may not be selling your product to an end consumer and it may not even meet the definition of a
personal or household use item under the CGA the explanations above help our understanding of fitness for purpose.

http://www.sinclair-consultancy.sagenet.co.uk/glossary.htm
http://www.primarydandt.org/learn/glo_0000000323.asp
http://www.qualityresearchinternational.com/glossary/fitnessforpurpose.htm
http://www.techlink.org.nz/glossaryitem.htm?GID=2
http://www.consumeraffairs.govt.nz/businessinfo/cga/services.html#purpose

988

66 CNC
The CNC (computer numerical control) machine in class is a useful tool which allows an automated
approach to drilling and milling PCBs, cases etc.

The machine contains its own PC and is connected to the network so that files can be transferred to it
directly. The PC in the cnc machine runs MACH3 cnc software, which interprets gcode commands to
control the machine.

Gcode consists of a text file with commands to control the machine e.g.
G90 G21 G49
M3 S15000
G0 Z15.000 Y100.000 Z15.000
G1 Z-4.500 F400
X26.473 Y129.066 Z-4.500
X57.024 Y153.810 Z-4.500
X352.976 Y153.810 Z-4.500
X383.527 Y129.066 Z-4.500
X410.000 Y100.000 Z-4.500
G0 Z15.000
G0 X0 Y0
M05
G0 Z0
M30
It is not necessary to write gcode it is best to draw what you want in a graphics program that creates
gcode.

989

66.1 Machine overview

The 3 stepper motors (X/Y/Z) are driven by a stepper driver circuit board connected to the PC (MACH3
software must be running before turning this on)
The spindle (router) itself is controlled by the PC via a VFD (variable frequency drive), which outputs a
high voltage at different frequencies to vary the speed
400Hz output = 24,000 rpm (revolutions per minute)
300Hz output = 18,000 rpm
200Hz output = 12,000 rpm

The keyboard and mouse control the PC, however another controller the MPG (manual pulse generator)
controls some features of the device as well.

990

66.2 Starting the CNC machine

You must wait for the program MACH3 to start before turning on the motor
controller, otherwise the motor controller could start in an unreliable state.

The most convenient way of controlling the machine manually is via the shuttleexpress
controller

Four of the buttons have been programmed into the mach3 software, press X to move the
machine on the X axis, and then change the outer and inner rotating dials to move the
machine. When the machine is in the position you want it to be then press the 4th button
to zero the axes in mach3.

991

66.3 CamBam

This software allows users to easily create gcode.
There are 4 stages to using this software.
Stage 1: draw shapes
Stage 2: determine the machining for each shape.
Stage 3: review the machining
Stage 4: export gcode.

66.4 CamBam options

Make sure you adjust the options (Menu-Tools-Options), I find the size of 200x120 useful when
designing layouts for teh plastic cases we use.

992

66.5 Drawing shapes in CamBam

Make sure the units are in millimietres, and the axis and grids are both on.
Select the circle tool and draw the circle in the drawing window
Select the rectangle tool and draw the rectangle in the drawing window

993

To edit an object, click it in the object tree view and then edit its properties, such as location (X,Y,Z) and
diameter.

994

66.6 Machining commands

Once a shape is created it needs to have machining added to it. Here you wll tell the cnc machine what
you want down to the shape, it could become a profile or a pocket.
Highlight the shape(s) you want to attach the machining to and click on the pocket tool to cut the whole
area away.

Set the target depth, for 15mm thick material I cut a 15.1mm hole. And I di it in three passes each of
5.5mm depth. This was acrylic so I set the cut rate high at 500mm/minute. I was using a 6mm tool as
well.

If you right click on the drawing and select Machining – Generate Toolpaths you cansee the path the tool
will take, to rotate the drawing hold the ALT button and left mouse button while moving the mouse

995

66.7 A Box of Pi

The Raspberry Pi is a single board ARM computer that comes without a case.
Here is the design for a case using Cambam.

996

997

998

It took quite a lot of trialling
to get to the finished design.
There are a few design
features that are worth
highlighting.

The shape of the keys on
the top and bottom pieces
that fit into the slots on the
sides are not square but cut
in by 0.5mm. The reason
this was done is that the mill
bit is round so cannot cut a
square inside corner, it
always cuts a radius. This
interfered with the side
when the two parts were put
together so rather than
making the slots longer on
the sides, these keys were
undercut by 0.5mm

999

The thickness of the
acrylic is 3mm
however the depth of
all cuts was finally
settled on as 3.3mm.
This allows for a little
misadjustment in the
height of the router
bit when starting the
cuts. So some mdf
is placed between
the acrylic and the
cnc table to protect
the cnc table.

The cut depth was
settled on as 1.1mm
increments and so
the bit does three
passes over every
cut.

The slots in the sides
that the keys on the
top and bottom fit
into was made to be
3.05mm, just a little
wider than the 3mm
acrylic thickness.

1000

Adding machining to multiple shapes.

All the rectangles are selected, then right click on one of the rectangles to add machining.
In this case a pocket so that all the material will be cut away.

Engraving requires text to be added to a shape.

1001

66.8 Holding Tabs

These are the small attachments between the part you are machining and the stock material.
You cannot just let the machine cut out a shape like this without supporting it, or towards the end of the curring it will move and get caught by the mill bit.

Three tabs were added to each of the 6 pieces, the tabs on these 2 side pieces were strategically placed so that the flexible pieces were well supported
while cutting, in one of the early prototypes one broke off as it was moving a little with the router bit.

To create tabs, select the profile you want to add the tabs to. Then click Basic at the top of the properties window to get the Advanced properties
settings. In the properties window expand HoldingTabs.

I chose a minium of 3 and a maximum of 3, height of 2.2, triangle shape.

Then change Manual to Automatic, go back to the drawing window and right click to select Machining from the
context menu and then choose Generate Toolpath. The tabs will appear on the pieces, once you can see
them they can be dragged around with the mouse to where youwant them to be.

1002

66.9 Engraving

These fonts have been downloaded into the windows font directory, they are very useful as they are only cut to one thickness
of the mill bit no matter what size they are made. Normal windows fonts are not.

Once text has been added it can be moved and editted and resized from the properties window.

1003

66.10 Polylines

These require you to draw freehand on the screen to make the shape you want.
In this case an arc was created, then copied and rotated, the two arcs were moved together and then joined.
When you go to join shapes Cambam will ask for a distance to show how close you want the pieces to be.
If this window is blank just enter 0.1 into it.

1004

Different polylines can be broken at their intersections and then parts deleted that you don’t want, then the rest joined together.

This shape was created by adding, copying, rotating, breaking and joining lots of shapes.

note the hooks are 3mm wide inside the same as the material thickness.

A shape can be double clicked and then the points dragged as well

1005

Before commencing cutting, make sure that the
order of the operations is correct, here the slots,
then engraving then profile (outside cuts) are
completed in that order.

Finally the machine was started and the cutting
commences!

1006

67 Index

$crystal 75
$regfile 75
7 Segment Displays 160
7805 376
AC to DC 373
Acrylic 980
algorithm 201

alarm 211
worksheet 319

algorithm example
dot matrix scrolling text 696
food processor 313
multiplication 334
peasant multiplication 336
pedestrian crossing lights 114
toaster 315

Alias 94, 95, 97, 117
Arrays 396
ASCII 343
assembly language 862
asynchronous 525
ATMega48 931, 938

pinout 106
ATMega8535 939

pinout 967
ATTiny26 930

pinout 106
ATTiny26 pinout 78
audio amplification 232
audio amplifier 173
AVR circuit description 935
backlight driver 368
BASCOM and AVR assignment 107
bi-colour LEDs 575
bit 144
block diagram See sytem block diagram
breadboard 15, 67
breadboard layout

ATMega48 931
ATTiny26 930

buffer 790
byte 145
capacitance 225
cells 50
circuit 15, 19, 21
circuit diagram

bi-colour LED board 575
bike audio amplifier 636
classroom 7 segment clock 711
Darlington H-Bridge 435
development board 1 941
development board 3 946
graphics LCD 647
keypad interrupt 669
L297 L298 stepper motor driver 440
LMD18200 H-Bridge 431
MAX7219 segment display driver 732
microphone sensor 436
Wiznet 779

codes of practice 44, 986
commenting code 103
component forming 182

naming programs 103
programming 160
programming template 104
use and naming of constants 79
using a code template 103
wood joining techiques 985

colour codes 16
common cathode 160
compiler 67, 72
complexities of a situation 708
Computer 64
Conductors 54
Config port 75
Const 75, 79
constants’ 75
contact bounce 96
conventional current 214
countersink holes 978
crystal 736
current 19
current limit 380, 388
current limit resistor 71, 79, 167, 229
Curriculum 14
darkness detector 23, 25
darlington 365
dB 378
debug 122
decibel 378
Deflcdchar 417
delays 198
developing pcb 38
development board

8535 V1 940
8535 V2 943
8535 V4 946
attiny461 V6 954
GLCD 959
GLCD vD 962

digital clock 287
dimensioning variables 145, 149
diode research assignment 24
diode theory 355
diodes 24
Do Loop 75, 416
Do Loop Until 93, 417
do-loop

dont delay 198
dot matrix 691
double 145
DS1307 613
duplex 525
electricity supply 53
Electrogalv 980
electrostatics 50
end 145
ESD rlectrostatic discharge 51
etching pcbs 39
example program

bi-colour LED board 578
expose pcb 38
fasteners 981
FET 368

1007

filtering AC 374
fitness for purpose 987
flash 144
flowchart 201
flowchart example

classroom 7 segment clock 716
food processor 314
hot glue gun timer 270
morse code 126
pedestrian crossing 115
scrolling text 350
shooter 418
switch programming 210
temperature monitor 476
touch screen 469
traffic lights 122

flowchart-example
alarm 211

for-next 281
GND 106
Graphics LCD See LCD
half duplex 610
hardware

7 segment display 709
H-Bridges 424

Darlington 434
LMD18200 430

heatsinks 383
HyperTerminal 530
I2C 610
IDE 72
If-Then statement 94, 95
input 21
insulating heatsinks 387
insulators 54
integer 144
interfacing 289
internet data transmission 771

DNS 777
gateway 775
GET 785
IP address 772
MAC address 772
packets 774
ping 773
ports 773
subnet mask 773

interrupts 665
keypad 402
keyword 867
Knightrider 78, 159
layout - PCB 386
layout - PSU 389
lcd

defining characters 285
LCD

alphanumeric 274
BGF Graphic Converter 644
designer 285, 417
Graphics T6963 641
Grapjics KS0108 646
scrolling text 350
SSD1928 & HX8238 818

LED's 17
light level 299
LM35 303
looping 136

Lowerline 342
making electricity 49
MAX 7219 732
MDF 979
Microcontroller 65
mod 145
Morse code 126
multimeters 218
Nature of Technology 14
negative numbers 145
negative power supply

grpahics LCD 651
Ohms law 221
one page brief - audio amp 175
oscillator 736
output 21
overflow 144
parallel 273
pcb layout

bi-colour LED board 576, 577
bike audio amplifier 636
classroom 7 segment clock 711
Darlington H-Bridge 436
development board 2 945
development board 3 954
L297 L298 stepper motor driver 442
LMD18200 H-Bridge 432

pcb Layout
MAX7219 segment display driver 733

PCB Making 38
PCB mounting 977
planning 117
planning tool 73, 115, 117, 166
Plywood 979
polling switches 98
ports 106
Ports 78
potentiometer 224
power assignment 52
power supplies 106
power supply theory 369
problem decomposition 474
process 21
program 67
program code

quiz game 196
program editor 72
program example

bike audio amplifier 637
bikelight statechart 498
classroom window controller 516
debounce 344
dot matrix 694
dot matrix scrolling text 697
DS1307 RTC 614
DS1678 RTC 619
graphics LCD KS0108 649
interrupts 665
keypad 402, 404, 405, 412
keypad interrupt 670
LCD analogue scale 456
LCD custom characters 418
MAX7219 segment display driver 734
medical blow machine 704
peasant multiplication 336
plant watering timer 625
RS232 534

1008

siren 690
statechart token game 509
switches 343
temperature sensor 303
time 451
timers 690
touch screen 470
Wiznet Ping 780

programmer 72
USB 871

programmer options 72
Programming 105
programming cable 71
PSU 371
pullup resistor 90
PWM 444
queue 790
random numbers 149
real time clock 611
resistance 19
Resistor Values 58
resistors 56
ripple 378
RS 232 527
schematic

quiz game 190
schematic - PSU 388
schematic PSU 385
Select Case 296
select-case 298
semiconductors 228
serial communications 525
serial to parallel 575
sheet metal 980
shooter 417
simplex 525
simulator 72, 150
single 145
siren sound 140
SKETCHUP 184
software 67
soldering 41
soldering switches 43
soldering wires to LED’s 48
soldering-good and bad 45
sound 139
Sound 84
speakers 233
statechart example

bikelight 497
classroom window controller 513, 515
medical blow detector 703
plant watering timer 624
school day routine 478
timer project 643
token game 508
truck and traffic lights 482

statecharts 484
alternative coding technique 523

stepper motors 437

strings 341
suppliers 15
Switch circuit 90
switch types 234
Switches 100
synchronous 525, 610
system block diagram 118

alarm 201
alarm unit 211
bike audio amplifier 635
bikelight 494
classroom 7 segment clock 710
classroom window controller 513
food processor 313
medical blow detector 702
negative voltage generator 651
plant watering timer 624
SSD1928 & HX8238 818
timer project 642
toaster 315
traffic lights 118
Wiznet 778

system block diagram - PSU 385
systems 313
TDA2822M 173
TDA2822M specifications 176
Technological Knowledge 14
Technological Modelling 14
Technological Practice 14
Technological Products 14
Technological Systems 14
temperature 303
timer counters 685
timing diagram

LCD & SSD1928 835
SSD1928 828

touch screen 467
traffic lights 117
transceiver 525
transformer 371
Transistor 230
transistor specs assignment 231
truncate 145
ULN2803 365
underflow 144
variable resistors 224
variables 133, 138
variables research assignment 144
VCC 106
veroboard 191, 646
voltage 19
voltage divider 22, 227
voltage regulation 374
Waitms 75
While Wend 334, 350, 416, 417
wire assignment 55
WIZNET812 778
word 144
workshop machinery 982
www.mcselec.com 67

1009

The book covers both hardware interfacing and software design. It is based around the Atmel
AVR range of microcontrollers and the Bascom AVR cross compiler from MCS Electronics.

This book started out as a collection of notes used in courses in electronics and
microcontrollers for my secondary school students. It has been put together in one book to
encourage students to see their knowledge as something that does not exist as discreet and
separate during their years at school but as a complete 4 year course. It is hoped it will benefit
other beginners who want a gentle paced but comprehensive introduction to practical design of
projects using microcontrollers.

The language and understandings communicated through out the book reflect the use of
microcontrollers as the basis for student projects to meet the requirements of their
assessments in Technology Education in the New Zealand Currciulum and the Achievement
Standards at Level 1, 2 & 3 of NCEA as well as New Zealand Scholarship. Examples of
successful student projects are included and more will be included as time permits to increase
students knowledge and understandings of requirements at these various levels.

The materials in the book are under constant review as they are in use daily with students at
Mount Roskill Grammar School, Auckland,New Zealand; hence feedback on their usefulness is
immediate and changes are made often.

Students who might not go on to careers in electronics should also consider this course at
school as a year10 option as it develops beginning understandings and develops skills in
computer programming which have significant benefit to many careers in the modern world.

As students develop their understandings of microcontrollers it is hoped that they will also
develop an understanding of the power of the microcontroller to make possible the Information
revolution and also to make our world become either a better or a worse place to live in. It
would be great tohear from people how they used the knowledge they gain from this book to
help others.

© Copyright B.Collis
The author reserves full rights to sell, resell and distribute this work.

(All mistakes are mine let me know about them so I can correct them)

	1 Introduction to Practical Electronics
	1.1 Your learning in Technology
	1.1.1 Technology Achievement Objectives from the NZ Curriculum

	1.2 Key Competencies from The NZ Curriculum

	2 An introductory electronic circuit
	2.1 Where to buy stuff?
	2.2 Identifying resistors by their colour codes
	2.3 LED's
	2.4 Some LED Specifications
	2.5 LED research task
	2.6 Adding a switch to your circuit
	2.7 Switch assignment
	2.8 Important circuit concepts
	2.9 Changing the value of resistance
	2.10 Adding a transistor to your circuit
	2.11 Understanding circuits
	2.12 The input circuit – an LDR
	2.13 Working darkness detector circuit
	2.14 Protecting circuits – using a diode
	2.15 Diode Research Task
	2.16 Final darkness detector circuit

	3 Introductory PCB contruction
	3.1 Eagle Schematic and Layout Editor Tutorial
	3.2 An Introduction to Eagle
	3.2.1 Open Eagle Control Panel
	3.2.2 Create a new schematic
	3.2.3 Saving your schematic

	3.3 The Schematic Editor
	3.3.1 The Toolbox
	3.3.2 Using parts libraries
	3.3.3 Using Components from within libraries.
	3.3.4 Different component packages
	Moving parts
	3.3.5 Wiring parts together
	3.3.6 Zoom Controls
	3.3.7 Junctions
	3.3.8 ERC

	3.4 The Board Editor
	3.4.1 Airwires
	3.4.2 Moving Components
	3.4.3 Hiding/Showing Layers
	3.4.4 Routing Tracks
	3.4.5 Ripping up Tracks

	3.5 Making Negative Printouts
	3.5.1 Other software required

	3.6 PCB Making

	4 Soldering, solder and soldering irons
	4.1 Soldering facts
	4.2 Soldering Safety
	4.3 Soldering wires to switches
	4.4 Codes of practice
	4.5 Good and bad solder joints
	4.6 Short circuits
	4.7 Soldering wires to LED’s

	5 Introductory Electronics Theory
	5.1 Making electricity
	5.1.1 Cells
	5.1.2 Batteries
	5.1.3 Different types of cells
	5.1.4 Electrostatics
	The positive side effects of Static Electricity
	The negative side effects of static electricity

	5.2 ESD electrostatic discharge
	5.3 Magnets, wires and motion
	5.4 Group Power Assignment
	5.5 Electricity supply in New Zealand
	5.6 Conductors
	5.7 Insulators
	5.8 Choosing the right wire
	5.9 Resistors
	5.10 Resistor Assignment
	5.11 Resistivity
	5.12 Resistor prefixes
	5.13 Resistor Values Exercises
	5.14 Capacitors
	5.15 Component symbols reference
	5.16 Year 10/11 - Typical test questions so far

	6 Introduction to microcontroller electronics
	6.1 What is a computer?
	6.2 What does a computer system do?
	6.3 What exactly is a microcontroller?
	6.4 What does a microcontroller system do?
	6.5 Getting started with AVR Programming
	6.6 Breadboard
	6.7 Breadboard+Prototyping board circuit
	6.8 Checking your workmanship
	6.9 Output Circuit - LED
	6.10 AVR programming cable
	6.11 Getting started with Bascom & AVR
	6.12 The compiler
	6.13 The programmer
	6.14 An introduction to flowcharts
	6.15 Bascom output commands
	6.16 Exercises
	6.17 Two delays
	6.18 Syntax errors -‘bugs’
	6.19 Microcontroller ports: write a Knightrider program using LED’s
	6.20 Knightrider v2
	6.21 Knightroder v3
	6.22 Commenting your programs
	6.23 Learning review
	6.24 What is a piezo and how does it make sound?
	6.25 Sounding Off
	6.26 Sound exercises
	6.27 Amp it up

	7 Microcontroller input circuits
	7.1 Single push button switch
	7.3 Switch in a breadboard circuit
	7.4 Checking switches in your program
	7.5 Program Logic – the ‘If-Then’ Switch Test
	7.6 If-then exercises
	7.7 Switch contact bounce
	7.8 Reading multiple switches
	7.9 Bascom debounce command
	7.10 Different types of switches you can use
	7.11 Reflective opto switch

	8 Programming Review
	8.1 Three steps to help you write good programs
	8.2 Saving Programs
	8.3 Organisation is everything
	8.4 Programming template
	8.5 What you do when learning to program
	8.6 AVR microcontroller hardware
	8.7 Power supplies
	8.8 BASCOM and AVR assignment
	8.9 Programming words you need to be able to use correctly
	8.10 Year10/11 typical test questions so far

	9 Introduction to program flow
	9.1 Pedestrian crossing lights controller
	9.2 Pedestrian Crossing Lights schematic
	9.3 Pedestrian Crossing Lights PCB Layout
	9.4 Algorithm planning example – pedestrian crossing lights
	9.5 Flowchart planning example – pedestrian crossing lights
	9.6 Getting started code
	9.7 Modification exercise for the pedestrian crossing
	9.8 Traffic lights program flow

	10 Introductory programming - using subroutines
	10.1 Sending Morse code
	10.2 LM386 audio amplifier PCB
	10.3 LM386 PCB Layout

	11 Introductory programming – using variables
	11.1 Stepping or counting using variables
	11.2 For-Next
	11.3 Siren sound - programming using variables
	11.4 Make a simple siren
	11.5 Siren exercise
	11.6 A note about layout of program code
	11.7 Using variables for data
	11.8 Different types of variables
	11.9 Variables and their uses
	11.10 Vehicle counter
	11.11 Rules about variables
	11.12 Examples of variables in use
	11.13 Byte variable limitations
	11.14 Random Numbers
	11.15 The Bascom-AVR simulator
	11.16 Electronic dice project
	11.17 Programming using variables – dice
	11.18 Dice layout stage 1
	11.19 Dice layout stage 2
	11.20 Dice Layout final
	11.21 First Dice Program flowchart
	11.22 A note about the Bascom Rnd command
	11.23 Modified dice
	11.24 Modified Knightrider

	12 Basic displays
	12.1 7 segment displays
	12.2 Alphanumeric LED displays

	13 TDA2822M Portable Audio Amplifier Project
	13.1 Portfolio Assessment Schedule
	13.2 Initial One Page Brief
	13.3 TDA2822M specifications
	13.4 Making a PCB for the TDA2822 Amp Project
	13.4.1 Moving parts
	13.4.2 Wiring parts together
	13.4.3 ERC
	13.4.4 Laying out the board
	13.4.5 Minimise airwire length
	13.4.6 Hiding layersto help you see the airwire paths clearly
	13.4.7 Routing Tracks
	13.4.8 Make the Negative Printout

	13.5 Extra PCB making information
	13.6 Component Forming Codes of Practice
	13.7 TDA2811 wiring diagram
	13.8 SKETCHUP Quick Start Tutorial
	13.9 Creating reusable components in SketchUp

	14 Basic programming logic
	14.1 Quiz Game Controller
	14.2 Quiz game controller system context diagram
	14.3 Quiz game controller block diagram
	14.4 Quiz game controller Algorithm
	14.5 Quiz game schematic
	14.6 Quiz game board veroboard layout
	14.7 Quiz Controller flowchart
	14.8 'Quiz Controller program code
	14.9 Don’t delay - use logic

	15 Algorithm development – an alarm system
	15.1 Simple alarm system – stage 1
	15.2 Alarm System Schematic
	15.3 A simple alarm system – stage 2
	15.4 A simple alarm system – stage 3
	15.5 A simple alarm system – stage 4
	15.6 More complex alarm system
	15.7 Alarm unit algorithm 5:
	15.8 Alarm 6 algorithm:

	16 Basic electronic theory
	16.1 Conventional Current
	16.2 Ground
	16.3 Preferred resistor values
	16.4 Resistor Tolerances
	16.5 Combining resistors in series
	16.6 Combining resistors in parallel
	16.7 Resistor Combination Circuits
	16.8 Multimeters
	16.9 Multimeter controls
	16.10 Choosing correct meter settings
	16.11 Ohms law
	16.12 Voltage & Current Measurements
	16.12.1 Measuring Voltage
	16.12.2 Measuring Current
	16.12.3 Meter Safety
	16.12.4 Circuit Safety
	16.12.5 Battery Life

	16.13
	16.14 Continuity
	16.14.1 In-circuit measurements

	16.15 Variable Resistors
	16.16 Capacitors
	16.17 Capacitor Codes and Values
	16.18 Converting Capacitor Values uF, nF , pF
	16.19 Capacitor action in DC circuits
	16.20 The Voltage Divider
	16.21 Using semiconductors
	16.22 Calculating current limit resistors for an LED
	16.23 The Bipolar Junction Transistor
	16.24 Transistor Specifications Assignment
	16.25 Transistor Case styles
	16.26 Transistor amplifier in a microcontroller circuit
	16.27 Transistor Audio Amplifier
	16.28 Speakers
	16.29 Switch types and symbols

	17 Basic project planning
	17.1 System Designer
	17.1.1 Creating a new project.
	17.1.2 Toolbars
	17.1.3 Context Menus
	17.1.4 Selecting items to copy them
	17.1.5 Pan diagrams
	17.1.6 .Zoom diagrams

	17.2 Project mind map
	17.2.1 Milestone duration
	17.2.2 Automatic timeline creation

	17.3 Project timeline
	17.3.1 Milestone Planning
	17.3.2 Stakeholder Consultations
	17.3.3 Critical review points
	17.3.4 Copying Timelines to put them into your journal

	17.4 System context diagram
	17.4.1 First step is to create a main system device
	17.4.2 Add attributes to the device
	17.4.3 External sensors and actuators
	17.4.4 User interactions with the system (social environment)
	17.4.5 Physical Environment
	17.4.6 Clients and stakeholders
	17.4.7 Conceptual statement and physical attributes
	17.4.8 Secondary system devices
	17.4.9 External system connections
	17.4.10 Export diagram to written documentation

	17.5 Block Diagram
	17.6 Board Layouts
	17.6.1 Backgrounds
	17.6.2 Add Components
	17.6.3 Add your own pictures to the layout
	17.6.4 Create your own backgrounds and components

	17.7 Algorithm design
	17.8 Flowcharts
	17.8.1 Drag and drop flowchart blocks
	17.8.2 Beginning template

	18 Example system design - hot glue gun timer
	18.1 System context diagram
	18.2 Hot glue gun timer block diagram
	18.3 Hot glue gun timer algorithm
	18.4 Hot glue gun timer flowchart

	19 Basic interfaces and their programming
	19.1 Parallel data communications
	19.2 LCDs (liquid crystal displays)
	19.3 Alphanumeric LCDs
	19.4 ATTINY26 Development PCB with LCD
	19.5 Completing the wiring for the LCD
	19.6 LCD Contrast Control
	19.7 Learning to use the LCD
	19.8 Repetition again - the ‘For-Next’ and the LCD
	19.9 LCD Exerises
	19.10 Defining your own LCD characters
	19.11 LCD custom character program
	19.12 A simple digital clock
	19.13 Adding more interfaces to the ATTiny26 Development board
	19.14 Ohms law in action – a multicoloured LED

	20 Basic analog to digital interfaces
	20.1 ADC - Analog to Digital conversion
	20.2 Light level sensing
	20.3 Voltage dividers review
	20.4 AVR ADC connections
	20.5 Select-Case
	20.6 Reading an LDR’s values
	20.7 Marcus’ year10 night light project
	20.8 Temperature measurement using the LM35
	20.9 A simple temperature display
	20.10 LM35 temperature display
	20.11 Force Sensitive Resistors
	20.12 Piezo sensor
	20.13 Multiple switches and ADC

	21 Basic System Design
	21.1 Understanding how systems are put together
	21.2 Food Processor system block diagram
	21.3 Subsystems
	21.4 Food Processor system functional attributes- algorithm
	21.5 Food Processor system flowchart
	21.6 Toaster Design
	21.7 Toaster - system block diagram
	21.8 Toaster Algortihm

	22 Basic System development - Time Tracker.
	22.1 System context diagram and brief
	22.2 Time tracker block diagram
	22.3 Algorithm development
	22.4 Schematic
	22.5 Time tracker flowchart and program version 1
	22.6 Time Tracker stage 2
	22.7 Time Tracker stage 3
	22.8 Time Tracker stage 4

	23 Basic maths time
	23.1 Ohms law calculator
	23.2 more maths - multiplication
	23.4 Program ideas - algorithm and flowchart exercises

	24 Basic string variables
	24.1 Strings assignment
	24.2 ASCII Assignment
	24.3 Time in a string
	24.4 Date in a string
	24.5 Scrolling message assignment
	24.6 Some LCD programming exercises.

	25 Advanced power interfaces
	25.1 Microcontroller power limitations
	25.2 Power
	25.3 Power dissipation in resistors
	25.4 Diode characteristics
	25.5 Using Zener diodes
	25.6 How diodes work
	25.7 How does a LED give off light?
	25.8 LCD Backlight Data
	25.9 Transistors as power switches
	25.10 High power loads
	25.11 AVR Power matters
	25.12 Darlington transistors - high power
	25.13 ULN2803 Octal Darlington Driver
	25.14 Connecting a FET backlight control to your microcontroller
	25.15 FET backlight control

	26 Advanced Power Supply Theory
	26.1 Typical PSUs
	26.2 The four stages of a PSU (power supply unit)
	26.3 Stage 1: step down transformer
	26.4 Stage 2: AC to DC Conversion
	26.5 Stage 3: Filtering AC component
	26.6 Stage 4: Voltage Regulation
	26.7 Ripple (decibel & dB)
	26.8 Line Regulation
	26.9 Load Regulation
	26.10 Current Limit
	26.11 Power, temperature and heatsinking
	26.12 Typical PSU circuit designs
	26.13 PSU block diagram
	26.14 PSU Schematic
	26.15 Practical current limit circuit.
	26.16 Voltage measurement using a voltage divider
	26.17 Variable power supply voltmeter program

	27 Year11/12/13 typical test questions so far
	28 Advanced programming -arrays
	29 AVR pull-up resistors
	30 Advanced keypad interfacing
	30.1 Keypad program 1
	30.2 Keypad program 2
	30.3 Keypad program 3 – cursor control
	30.4 Keypad texter program V1
	30.5 Keypad texter program 1a
	30.6 ADC keypad interface

	31 Do-Loop & While-Wend subtleties
	31.1 While-Wend or Do-Loop-Until or For-Next?

	32 DC Motor interfacing
	32.1 H-Bridge
	32.2 H-Bridge Braking
	32.3 L293D H-Bridge IC
	32.4 L298 H-Bridge IC
	32.5 LMD18200 H-Bridge IC
	32.6 LMD18200 program
	32.7 Darlington H-Bridge
	32.8 Stepper motors
	32.9 PWM - pulse width modulation
	32.10 PWM outputs
	32.11 Uses for PWM
	32.12 ATMEL AVRs PWM pins
	32.13 PWM on any port
	32.14 PWM internals

	33 Advanced System Example – Alarm Clock
	33.2 Analogue seconds display on an LCD
	33.3 LCD big digits

	34 Resistive touch screen
	34.1 Keeping control so you dont lose your ‘stack’

	35 System Design Example – Temperature Controller
	36 Advanced programming - state machines
	36.1 Daily routine state machine
	36.2 Truck driving state machine
	36.3 Developing a state machine
	36.4 A state machine for the temperature alarm system
	36.5 Using System Designer software to design state machines
	36.6 State machine to program code
	36.7 The power of state machines over flowcharts
	36.8 Bike light – state machine example
	36.9 Bike light program version1b
	36.10 Bike light program version2

	37 Alarm clock project re-developed
	37.1 System Designer to develop a Product Brainstorm
	37.2 Initial block diagram for the alarm clock
	37.3 A first (simple) algorithm is developed
	37.4 A statemachine for the first clock
	37.5 Alarm clock state machine and code version 2
	37.6 Token game – state machine design example

	38 Advanced window controller student project
	38.1 Window controller state machine #1
	38.2 Window controller state machine #3.
	38.3 Window controller state machine #5
	38.4 Window controller program

	39 Alternative state machine coding techniques
	40 Complex - serial communications
	40.1 Simplex and duplex
	40.2 Synchronous and asynchronous
	40.3 Serial communications, Bascom and the AVR
	40.4 RS232 serial communications
	40.5 Build your own RS232 buffer
	40.6 Talking to an AVR from Windows XP
	40.7 Talking to an AVR from Win7
	40.8 First Bascom RS-232 program
	40.9 Receiving text from a PC
	40.10 BASCOM serial commands
	40.11 Serial IO using Inkey()
	40.12 Creating your own software to communicate with the AVR
	40.13 Microsoft Visual Basic 2008 Express Edition
	40.14 Stage 1 – GUI creation
	40.15 Stage 2 – Coding and understanding event programming
	40.16 Microsoft Visual C# commport application
	40.17 Microcontroller with serial IO.
	40.18 PC software (C#) to communicate with the AVR
	40.19 Using excel to capture serial data
	40.20 PLX-DAQ
	40.21 StampPlot
	40.22 Serial to parallel
	40.23 Keyboard interfacing – synchronous serial data
	40.24 Keyboard as asynchronous data

	41 Radio Data Communication
	41.1 An Introduction to data over radio
	41.1.1 Pulse modulation

	41.2 HT12E Datasheet, transmission and timing
	41.3 HT12 test setup
	41.4 HT12E Program
	41.5 HT12D datasheet
	41.6 HT12D Program
	41.7 Replacing the HT12E encoding with software

	42 Introduction to I2C
	42.1 I2C Real Time Clocks
	42.2 Real time clocks
	42.3 Connecting the RTC
	42.4 Connecting the RTC to the board
	42.5 Internal features
	42.6 DS1307 RTC code
	42.7 DS1678 RTC code

	43 Plant watering timer student project
	43.1 System block diagram
	43.2 State machine
	43.3 Program code

	44 Bike audio amplifier project
	45 Graphics LCDs
	45.1 The T6963 controller
	45.2 Graphics LCD (128x64) – KS0108
	45.3 Generating a negative supply for a graphics LCD

	46 GLCD Temperature Tracking Project
	46.1 Project hardware
	46.2 Project software planning
	46.3 Draw the graph scales
	46.4 Read the values
	46.5 Store the values
	46.6 Plot the values as a graph
	46.7 Full software listing

	47 Interrupts
	47.1 Switch bounce problem investigation
	47.2 Keypad- polling versus interrupt driven
	47.3 Improving the HT12 radio system by using interrupts
	47.4 Magnetic Card Reader
	47.5 Card reader data structure
	47.6 Card reader data timing
	47.7 Card reader data formats
	47.8 Understanding interrupts in Bascom- trialling
	47.9 Planning the program
	47.10 Pin Change Interrupts PCINT0-31

	48 Timer/Counters
	48.1 Timer2 (16 bit) Program
	48.2 Timer0 (8bit) Program
	48.3 Accurate tones using a timer (Middle C)
	48.4 Timer1 Calculator Program
	48.5 Timer code to make a siren by varying the preload value

	49 LED dot matrix scrolling display project – arrays and timers
	49.1 Scrolling text code
	49.2 Scrolling text – algorithm design
	49.3 Scrolling test - code

	50 Medical machine project – timer implementation
	50.1 Block diagram
	50.2 Blower - state machine
	50.3 Blower program code

	51 Multiple 7-segment clock project – dual timer action
	51.1 Understanding the complexities of the situation
	51.2 Hardware understanding:
	51.3 Classroom clock – block diagram
	51.4 Classroom clock - schematic
	51.5 Classroom clock - PCB layout
	51.6 Relay Circuit Example
	51.7 Classroom clock – flowcharts
	51.8 Classroom clock – program

	52 The MAX 7219/7221 display driver IC’s
	52.1 AVR clock/oscillator

	53 Cellular Connectivity-ADH8066
	53.1 ADH prototype development
	53.2 ADH initial test setup block diagram
	53.3 Process for using the ADH
	53.4 ADH communications
	53.5 Initial state machine
	53.6 Status flags
	53.7 Second state machine
	53.8 StateMachine 3
	53.9 Sending an SMS text
	53.10 Receiving an SMS text
	53.11 Splitting a large string (SMS message)
	53.12 Converting strings to numbers
	53.13 Full Program listing for SM3

	54 Data transmission across the internet
	54.1 IP address
	54.2 MAC (physical) address
	54.3 Subnet mask
	54.4 Ping
	54.5 Ports
	54.6 Packets
	54.7 Gateway
	54.8 DNS
	54.9 WIZNET812
	54.10 Wiznet 812 Webserver V1
	54.11 Transmitting data
	54.12 Wiznet Server2 (version1)
	54.13 ‘Main do loop
	54.14 process any messages received from browser
	54.15 Served webpage

	55 Assignment – maths in the real world
	55.1 Math sssignment - part 1
	55.2 Math assignment - part 2
	55.3 Math assignment - part 3
	55.4 Math assignment - part 4
	55.5 Math assignment - part 5
	55.6 Math assignment - part 6
	55.7 Extension exercise

	56 SSD1928 based colour graphics LCD
	56.1 System block diagram
	56.2 TFT LCDs
	56.3 System memory requirements
	56.4 System speed
	56.5 SSD and HX ICs
	56.6 Colour capability
	56.7 SSD1928 and HX8238 control requirements
	56.8 SSD1928 Software
	56.9 SSD1928 microcontroller hardware interface
	56.10 Accessing SSD control registers
	56.11 SSD1928_Register_routines.bas
	56.12 Accessing the HX8238.
	56.13 SSD1928_GPIO_routines.bas
	56.14 LCD timing signals
	56.15 HX setups
	56.16 SSD setups
	56.17 SSD line / HSync timing
	56.18 SSD row / VSync/ frame timing
	56.19 HX and SSD setup routine
	56.20 'SSD1928_HardwareSetup_Routines.bas
	56.21 SSD1928_Window_Control_Routines.bas
	56.22 Colour data in the SSD memory
	56.23 Accessing the SSD1928 colour memory
	56.24 'SSD1928_Memory_Routines.bas
	56.25 Drawing simple graphics
	56.26 'SSD1928_Simple_Graphics_Routines.bas
	56.27 SSD1928_text_routines

	57 Traffic Light help and solution
	58 Computer programming – low level detail
	58.1 Low level languages:
	58.2 AVR Internals – how the microcontroller works
	58.3 1. The 8bit data bus
	58.4 2. Memory
	58.5 3. Special Function registers
	58.6 A simple program to demonstrate the AVR in operation
	58.7 Bascom keyword reference

	59 USB programmer - USBASP
	60 USBTinyISP programmer
	61 C-Programming and the AVR
	61.1 Configuring a programmer
	61.2 First program
	61.3 Output window
	61.4 Configuring inputs & outputs
	61.5 Making a single pin an input
	61.6 Making a single pin an output
	61.7 Microcontroller type
	61.8 Includes
	61.9 Main function
	61.10 The blinkyelled program
	61.11 Counting your bytes
	61.12 Optimising your code
	61.13 Reading input switches
	61.14 Macros
	61.15 Auto-generated config from System Designer
	61.16 Writing your own functions
	61.17 AVR Studio editor features
	61.18 AVR hardware registers
	61.19 Character LCD programming in C
	61.20 CharLCD.h Header file
	61.21 Manipulating AVR register addresses
	61.22 Writing to the LCD
	61.23 Initialise the LCD
	61.24 lcd commands
	61.25 Writing text to the LCD
	61.26 Program Flash and Strings
	61.27 LCD test program1
	61.28 CharLCD.h
	61.29 CharLCD.c

	62 Object Oriented Programming (OOP) in CPP and the AVR
	62.1 The black box concept
	62.2 The concept of a class
	62.3 First CPP program
	62.4 Creating an AVR CPP program in Atmel Studio 6
	62.5 Adding our class files to the project
	62.6 First Input and output program
	62.7 Class OutputPin
	62.8 Class InputPin
	62.9 Inheritance
	62.10 Class IOPin
	62.11 Encapsulation
	62.12 Access within a class
	62.13 Class Char_LCD
	62.14 Exercise – create your own Led class.

	63 Alternative AVR development PCBS
	63.1 ATTiny461 breadboard circuit
	63.2 Alternative ATMega48 breadboard circuit
	63.3 Alternative ATMega breadboard circuit
	63.4 AVR circuit description
	63.5 ATMega on Veroboard
	63.6 Different microcontroller starter circuit
	63.7 Getting started code for the ATMega48
	63.8 Getting started code for the ATMega16
	63.9 Early ATMega boards
	63.10 AVR Development Board 2
	63.11 Dev board version 2 circuit diagram
	63.12 Dev board pcb layout version 2
	63.13 ATMEGA V4b development board circuit – 12TCE 2011
	63.14 V4b devboard layout 12TCE 2011
	63.15 ATMega Dev PCB V5DSchematic (2012)
	63.16 ATMega Dev PCB V5DLayout (2012)
	63.17 ATMega Dev PCB V5D Copper (2012)
	63.18 Year10 ATTiny461 V3d development board
	63.19 Year11 ATTiny461 V6d development board
	63.20 ATTiny461 V6d development board layouts
	63.21 ATTiny461 V6b development board images
	63.22 ATMega 48 Dev PCB 2A
	63.23 ATMEGA Protoyping board
	63.24 128x64 GLCD Schematic – VerC -data on portB
	63.25 128x64 GLCD Layout – VerC –data on portB
	63.26 128x64 GLCD Schematic – VerD -data on portB
	63.27 128x64 GLCD Layout –VerD -data on portB
	63.28 GLCD 192x64 schematic
	63.29 GLCD 192x64 layout
	63.30 ATMEGA microcontroller pin connections
	63.31 ATMEGA16/644 40pin DIP package– pin connections

	64 Eagle - creating your own library
	64.1 Autorouting PCBS

	65 Practical Techniques
	65.1 PCB Mounting
	65.2 Countersink holes and joining MDF/wood
	65.7 Choosing fasteners
	65.8 Workshop Machinery
	65.9 Glues/Adhesives
	65.10 Wood Joining techniques
	65.11 Codes of Practice for student projects
	65.12 Fitness for purpose definitions and NZ legislation

	66 CNC
	66.1 Machine overview
	66.2 Starting the CNC machine
	66.3 CamBam
	66.4 CamBam options
	66.5 Drawing shapes in CamBam
	66.6 Machining commands
	66.7 A Box of Pi
	66.8 Holding Tabs
	66.9 Engraving
	66.10 Polylines

	67 Index

